220/ 319: Recursion

The Art of Self Reference
220/ 319: Recursion

The Art of Self Reference
220/ 319: Recursion

The Art of Self Reference
220/ 319: Recurs ion

Meena Syamkumar
Andy Kuemmel
https://en.wikipedia.org/

Meena Syamkumar
Andy Kuemmel

https://en.wikipedia.org/

Part 2 of CS$220 / CS319 - Data Structures

= Lists and Dictionaries
= CSVand |SON
"= Objects and References
* Fancy Functions
= Recursion
* Functions are Objects
" |terators and comprehensions
* Error handling
* Files and directories

Goal: use self-reference is a meaningful way

Hofstadter's Law:“It always takes longer than you expect, even when you
take into account Hofstadter's Law.”

(From Godel, Escher, Bach)

good advice for CS assignments!

mountain:“a landmass that projects conspicuously above its surroundings
and is higher than a hill”

hill:“a usually rounded natural elevation of land lower than a mountain”

(Example of unhelpful self reference from Merriam-Webster dictionary)

https://en.wikipedia.org/wiki/Circular definition

https://en.wikipedia.org/wiki/Circular_definition

Learning Objectives

Recursive definitions and recursive information

What is a recursive definition/structure?

Recursive code
« What is recursive code?

Ny write recursive code!?

W
- Where do computers keep local variables for recursive calls?
W

nat happens to programs with infinite recursion?

Read Think Python
+ Ch 5: "Recursion” through “Infinite Recursion”

+ Ch 6: "More Recursion” through end

What is Recursion?

Recursive definitions
- Contain the term in the body

. Dictionaries, mathematical definitions, etc

A number x is a positive even number if:

*X is 2
OR

*x equals another positive even number plus two

What is Recursion?

Recursive structures may refer to structures of the same type

. data structures or real-world structures

rows = | rOWS
“A", [1, 2]],
(“B", [3, 4, 511,

[“C"y [6, 711

Recursive structures are EVERYVWWHERE!

“name”: *“alice”,
llgrade" : IIA" ’
“score”: 96,
“exams”: {

“midterm”: {“points”:94,
“total”:100},
“final”: {“points”: 98,
“total”: 100}

nature files formats

Example: Trees (Direct Recursion)

Term: branch

Definition: wooden stick, with an
end splitting into other branches,
OR terminating with a leaf

Example: Trees (Direct Recursion)

Term: branch

Definition: wooden stick, with an
end splitting into other branches,
OR terminating with a leaf

\ recursive case allows
trees are finite: indefinite growth
eventual base case

allows completion

‘ base case (leaf)

recursive case (branch)

Example: Directories (aka folders)

Term: directory

\ recursive because def contains term

N

Definition: a collection of files and directories

QO © M directoryA

¢ gtmnmu 555 v || P v

il
<
vy

%

Favorites
& %
<2 Dropbox

@ AirDrop IXT IXT X1
E All My Files 1.txt 2.txt 3.txt directoryB directoryB2

¢\ iCloud Drive
/~: Applications ‘ ‘ ‘ \ W
Desktop

I"Q'\\ Dociiments

file system tree

Example: Directories (aka folders)

Term: directory

\ recursive because def contains term

N

Definition: a collection of files and directories

® o directoryB
<> Bl= oo = g =y 32 Q
© ® O directoryC
Favorites
oo — Soo S— Es
< || % Dropbox s = 0D ol 5B~ %~ =v = Q
. @ AirDrop Favorites
Favorll = All My Files 22 Dropbox
> 4 . .
£s < iCloud Drive @ AirDrop T
@ :/‘\': SREIEHERS @ All My Files keep-going not-there-yet.txt
) Desktop :
¢ iCloud Drive directoryB2
ﬁ Documents \
¢ iCloud Drive 7= Applications
f Lt Deskto
;/‘-\.; Applications & P
) Documents

=] Desktop

I—Qﬁ Dociuiments

file system tree

Example: JSON Format (Indirect Recursion)

Example JSON Dictionary: Term: json-dict
Def: a set of json-mapping's

/

Term: json-mapping

Def: a json-string (KEY) paired with a
json-string OR json-number

R json-dict (VALUE)

{

“name”: *“alice”,
14 gradell : IIAII ,
“score”: 96

4 4

keys values

recursive self reference isn’t always direct!

Example: JSON Format (Indirect Recursion)

Example JSON Dictionary: Term: json-dict
/ Def: a set of json-mapping's
{

“name”: *“alice”, ‘

ugrade” : ;2" " Term: json-mapping
4

Def: a json-string (KEY) paired with a
“exams"” : §/{

Y Y A o json-string OR json-number
nidterm”: /{igi:;‘s | igﬁi“ OR json-dict (VALUE)

“final”:f/{"”points”: 98
“total”: 100} ‘

“score” :

Learning Objectives

Recursive definitions and recursive information

What is a recursive definition/structure?

--

Recursive code
hat is recursive code?
Ny write recursive code!?

nere do computers keep local variables for recursive calls?

nat happens to programs with infinite recursion?

Read Think Python

+ Ch 5: "Recursion” through “Infinite Recursion”
+ Ch 6: *“More Recursion” through end

Recursive Code

What is it?
- A function that calls itself (possible indirectly)

N
f g h
N

call call

Recursive Code

What is it!?

- A function that calls itself (possible indirectly)

def f():
other code

()

other code

def

def

g():

other code

h()

other code

h():

other code

g()

other code

Recursive Code

What is it?
- A function that calls itself (possible indirectly)

Motivation: don’t know how big the data is before execution
- Need either iteration or recursion

- In theory, these techniques are equally powerful

Why use recursion!?
- simple and elegant solution
- recursive code corresponds to recursive data

- reduce a big problem into a smaller problem

https://texastreesurgeons.com/services/tree-removal/

https://texastreesurgeons.com/services/tree-removal/

Recursive Student
Counting

©OOOC
S P O000C

Professor with a question * g; 3/

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

Constraints:

- You can only talk to the student
behind / in front of you

What should each student
ask the person behind
them?

Example from https://courses.cs.washington.edu/

OOOOO
OOOOU

How many students
are in this column?

courses/cse143/17au/

https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

Strategy: reframe question as “how
many students are behind you?”

Reframing is the hardest part!

how many are behind you? <

Process:
if nobody is behind you: say O
else: ask them, say their answer+|

Example from https://courses.cs.washington.edu/courses/cse143/17au/

AKOMOO

https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

how many are behind you?

how many are behind you?

Strategy: reframe question as “how

. how many are behind you?
many students are behind you?”

how many are behind you?
Process:

if nobody is behind you: say O
else: ask them, say their answer+| how many are behind you?

AWAVAYAYA

AKOMOO

Example from https://courses.cs.washington.edu/courses/cse143/17au/

https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student /6 0\
Counting

Strategy: reframe question as “how

many students are behind you?” ~ <

Process:
if nobody is behind you: say O
else: ask them, say their answer+| 24

Aha! Clearly there must]>

be 25 students in this
« Each student runs the same “code” | column

Observations:

- Each student has their own “state”

Example from https://courses.cs.washington.edu/courses/cse143/17au/

https://courses.cs.washington.edu/courses/cse143/17au/

Practice: Reframing Factorials

N!'=1x2x3x...x(N-2)x(N-I)xN

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1

21 = 1%2 = 2

31 = 1%2*3 = 6

i1 = 1w2%3%4 = 24 4. Python Code:

51 = 1*%2%3%4%5 = 120

def fact(n):
2. Self Reference: pass # TODO

Goal: work from examples to get to recursive code

Example: Factorials

1. Examples: 3. Recursive Definition:
1! = 1 simplest example
21 = 1%*2 = 2
31 = 1*2*%3 = 6
1 = 1%2%3%4 = 24 4. Python Code:
51 = 1%*2%3%4*5 = 120
def fact(n):
2. Self Reference: pass # TODO

Goal: work from examples to get to recursive code

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1

21 = 1%2 = 2

31 = 1%2*3 = 6

i1 = 1w2%3%4 = 24 4. Python Code:

51 = 1*%2%3%4%5 = 120

def fact(n):
2. Self Reference: pass # TODO

look for patterns that allow
rewrites with self reference

Example: Factorials

1. Examples:

11 =1

21 = 1%2 = 2

31 = 1%*2%3 = 6

4) = 1*2%3%4 = 24

5! 1%#2*3%4*5 = 120

:

2. Self Reference:

1!
2!
3!
4!
5!

41 * 5

3. Recursive Definition:

4. Python Code:

def fact(n):
pass # TODO

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1
21 = 1%*2 = 2
31 = 1%2*3 = 6
4! = 1%2%3*4 = 24 4. Python Code:
51 = 1*2%3*%x4*5 = 120
def fact(n):
2. Self Reference: pass # TODO
1! =
21 =
31 =
41 = 31 * 4

5! 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1
21 = 1%2 = 2
31 = 1%2*3 = 6
41 = 1*2%3*4 = 24 4. Python Code:
51 = 1*%2*3%4*5 = 120
def fact(n):
2. Self Reference: pass # TODO
1! =
21 = 11 * 2
31 = 21 * 3
41 = 31 * 4

5! 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1
21 = 1%2 = 2
31 = 1%2%3 = 6
1 = 1%2%3%4 = 24 4. Python Code:
51 = 1%2*3%4%5 = 120
def fact(n):
2. Self Reference: pass # TODO
11 = 1 don’t need a pattern

at the start

2! = 1! * 2
3! = 2! * 3
4!\ = 31 * 4
5! = 4! * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1 convert self-referring examples
21 = 1*2 = 2 to a recursive definition

31 = 1*2*3 = 6

4t = 1%2%3%4 = 24 4. Python Code:

51 = 1*%2*%3*%4*5 = 120
def fact(n):

2. Self Reference: pass # TODO
1! =1

21 = 11 * 2

31 = 21 % 3

41 = 31 * 4

51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1 11is 1@

21 = 1%2 = 2

31 = 1%2%3 = 6

4!t = 1%2*3*4 = 24 4. Python Code:
51 = 1#%2%3%4%5 = 120

def fact(n):

2. Self Reference: pass # TODO

1! =1

2! = 1! * 2
3! = 2! * 3
4!\ = 31 * 4
5! = 4! * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1 11is1@
21 = 1%2 = 2 N!Iis?2227? for N > 1

3! = 1*2*3 = 6
41 = 1*2*3*4 = 24

4. Python Code:
51 = 1%2%3%4*5 = 120

def fact(n):

2. Self Reference: pass # TODO

Example: Factorials

1. Examples: 3. Recursive Definition:

11 o= 1 11is1@

21 = 1%2 = 2 N!iS(N—l)!*NfOI’N>1/
31 = 1*2%3 = 6

1 = 1%2%3%4 = 24 4. Python Code:

51 = 1%2%3%4*5 = 120

def fact(n):

2. Self Reference: pass # TODO

LI,
2! = 1! * 2
{31 = 21 * 3
i 41 = 31 % 4

Example: Factorials

1. Examples: 3. Recursive Definition:

11 o= 1 11is1@

21 = 1%2 = 2 N!iS(N—l)!*NfOI’N>1/
31 = 1*2%3 = 6

1 = 1%2%3%4 = 24 4. Python Code:

51 = 1%2%3%4*5 = 120

def fact(n):
1T n == 1:1'
return 1

2. Self Reference:

1! =1

2! = 1! * 2
3! = 2! * 3
4!\ = 31 * 4
5! = 4! * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 = 1 111s 1‘
21 = 1*2 = 2 N! s (N-1)! *NforN>1/
31 = 1*2*%3 = 6
4l = 1%2%3%4 = 24 4. Python Code:
51 = 1*%#2*3*%4*5 = 120
def fact(n):

2. Self Reference: ifn==146

return 1
11 = 1 p =fact(n-1)
21 = 11 * 2 return n x p
3! = 2! * 3
41 = 31 * 4
5! = 4! * 5

Rule |:Base case should always be defined and be terminal
Rule 2: Recursive case should make progress towards base case

Example: Factorials

1. Examples: 3. Recursive Definition:
11 = 1 111s 1‘
21 = 1*%2 = 2 N!iS(N—l)!*NfOI’N>1/
31 = 1*2*3 = 6
4l = 1w2x3xa = 24 4. Python Code:
51 = 1*2%3*%4%5 = 120
def fact(n):

2. Self Reference: ifn=1:6

return 1
11 = 1 p =fact(n-1)
21 = 11 * 2 return n x p
31 =21 * 3
41 = 31 * 4 Let’s “run’” it!
51 = 4! * 5

Tracing Factorial

def fact(n):
ifn=1:0
return 1
D =fact(n—1)/
return n x p

How does Python keep
all the variables separate!

frames to the rescue!

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple
invocations share code.

Variables for an invocation exist in a frame
- frames are stored in the stack
- one invocation is active at a time: its frame is on the top of stack

- multiple frames at the same time for the multiple invocations of the
same function

I | fact
frame: | variables stack: fact

fact
global

Deep Dive: mp dcf fact(n):

Runtime Stack Current eturn 1
Runtime Stack P =fact(n-1)

' return n x p

fact
Nn=1
fact fact
n=2 n=2
fact fact fact
ﬂ:3 n:3 N :3
P= P= P=
global global global global

0 1 2 3 4 5

time

Deep Dive:
Runtime Stack

def fact(n):
1T n ==

return 1

np =fact(n-1)
return n x p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
P= P= p=1
fact fact fact fact fact
n=3 n=3 n=3 n=3 n=3 return 6 (n*p)
p= p= p= p= p=2 1
global global global global global global global
0 1 2 3 4 5 ®

“Infinite” Recursion Bugs

What happens if:

I. factorial is called with a negative number?

]

def fact(n):
1T n ==

return 1

n = fact(n-1)

return n x p

never
terminates

“Infinite” Recursion Bugs

What happens if:

I. factorial is called with a negative number?
2. we forgot the “n == 1" check?
3

def fact(n
1'Fn——1

retiurn 1
I . C AT 11 ==

p = fact(n-1)
return n x p

never
terminates

fact
N=-

fact
n=0

fact
n=1

fact
n=2

fact
n=3

global

Let’s code

Example: Pretty Print

Goal: format nested lists of bullet points

Input:
®* The recursive lists

Output:
* Appropriately-tabbed items

Example:

>>> pretty print([“aA”, ["1", *2", “3",],
“B”, [“4", ["i", *ii"]1]1])

*A

*]

*2

*3
*B

*4

Practice: Recursive List Search

Goal: does a given number exist in a recursive structure?

Input:
* A number
* Alist of numbers and lists (which contain other numbers and lists)

Output:
* True if there’s a list containing the number, else False

Example:

>>> contains(3, [1,2,[4,[[31,[8,911,5,611)
True

>>> contains(12, [1,2,[4,[[31,[8,911,5,611)
False

T GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET QUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

M

YOUR PARTY ENTERS THE TAVERN.

https://xkcd.com/244/

(Meena)

https://hotsigns.net/two-thumbs-up-emoji-247-decal_p_302.html

https://xkcd.com/244/
https://hotsigns.net/two-thumbs-up-emoji-247-decal_p_302.html

Summary: Recursive Information

What is a recursive definition/structure!?
. Definition contains term
- Structure refers to others of same type

- Example: a dictionary contains dictionaries (which may contain...)

/ recursive case

‘ base case

Learning Objectives: Recursive Code

What is recursive code?

- Function that sometimes itself (maybe indirectly)

Why write recursive code!

- Real-world data/structures are recursive; intuitive for code to reflect data

Where do computers keep local variables for recursive calls?
- In a section of memory called a “frame”

- Only one function is active at a time, so keep frames in a stack

What happens to programs with infinite recursion?
- Calls keep pushing more frames

- Exhaust memory, throw StackOverflowError

