[220 / 319] Randomness

Meena Syamkumar
Andy Kuemmel

Announcements

* Follow-up courses
* Direct follow up course: CS 320
* Computer Sciences: CS 200, 300, 400, 537, 564, 640
* Office Hours
 Last day of TA / PM office hours: Wednesday Dec |5%.

e Additional instructor office hours

Final exam

* Recommended prep
* review past exam question papers
* make sure you understand all the worksheet problems
* review the readings, slides, lecture demo code
* review everything you got wrong on the midterms
* prepare a note sheet
 Live review session on Wednesday Dec |5

e All are welcome to attend

Course evaluations

We value student feedback greatly

Please bring a smile to your instructors' face by spending a few
minutes to fill out evals ©

Login to https://aefis.wisc.edu/
Find the CS220 / CS319 lecture and please provide feedback

https://aefis.wisc.edu/

Recommended reading

OREILLY" OREILLY’

HOW TO THINK LIXE A COMPUTER SCIENTIST

Luciano Ramalho Allen B. Downey
Fluent Python: Clear, Concise, Think Python: How to Think
and Effective Programming Like a Computer Scientist

by Luciano Ramalho by Allen B. Downey

Recommended reading

Data analysis:

* Data Action: Using Data for Public Good by Sarah Williams

SQL:

* Learning SQL: Generate, Manipulate, and Retrieve Data by Alan Beaulieu
* SQL Cookbook by Anthony Molinaro

Visualization:

* The Visual Display of Quantitative Information by Edward R. Tufte
Statistics:

* Thinking, Fast and Slow by Daniel Kahneman

* The Signal and the Noise by Nate Silver

* Statistics Done Wrong by Alex Reinhart

Why Randomize?

Games

Security

BTN NN NN RN AN AN AN AN AN AN AN AN NN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN NN AN AN NENN RN EANEREREEERREERENEE,
.

. .
. .

. our focus

Simulation

*
'''''

Outline

choice()

bugs and seeding
significance
histograms

normal()

New Functions Today

numpy . random:

° POWGI’fU| collection of functions

‘IIIIIIIIIIII.

e 0 *
o :choice Random sampling (hnumpy.random) Table Of Contents
" U e Random sampling
QpssssEsssnnn?® , 5
Simple random data g0
O SImple ranaom
u L . rand(do, d1, ..., dn) Random values in a given shape. a\ata
S e r 1 e s ° pl o t ° hl S t ° randn(do, d1, ..., dn) Return a sample (or samples) from the “standard 'DTI:JLItUtOUI
normal” distribution. o Random

o S i m i Iar to bar P I Ot randint(low[, high, size, dtype]) Return random integers from /ow (inclusive) to generator

high (exclusive).

® o I o d f random_integers(lowl, high, size]) Random integers of type np.int between /ow and Previous topic
visualize S P rea o high, inclusive. numpy.RankWarning
randnam camnlaffcizal\ Ratiirn randnm flaatc in tha half.anan intarual

random results , _
powerful collection of functions

Distributions

beta(a, b[, size]) Draw samples from a Beta
distribution.

binomial(n, p[, size]) Draw samples from a binomial
distribution.

chisquare(dff, size]) Draw samples from a chi-square
distribution.

dirichlet(alphal, size]) Draw samples from the Dirichlet

distribution.

S il o i) | m TNy e ﬁ Tt = ool

choice

from numpy.random import choice

result = choice([<choicel, choice2, ..])

\ list of things to

randomly choose from

choice

from numpy.random import choice

result = choice(["rock", "paper", "scissors'"])

\ list of things to

randomly choose from

Wanna play

https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors
https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

choice

from numpy.random import choice

result = choice(["rock", "paper", "scissors'"])
print(result)

Output:

SCissoOrs

Wanna play

https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

choice

from numpy.random import choice

result = choice(["rock", "paper", "scissors'"])
print(result)

result = choice(["rock", "paper", "scissors'"])

print(result) Output:

SCissoOrs

/‘ rock

each time choice is
called, a value is randomly
selected (will vary run to run)

choice

from numpy.random import choice

ChOice(["rOCk", llpaperll, llscissorsll],

for simulation, we'll often want
to compute many random results

choice

from numpy.random import choice

choice(["rock", "paper", "scissors'"],)

--
* *
.
.

array([?rock', 'scissors', 'paper’', 'rock’', 'paper']é dtype="'<U8")

.
--

it's list-like

Random values and Pandas

from numpy.random import choice

random Series
Series(choice(["rock", "paper",

0 rock
1 rock
2 scissors
3 paper
4 scissors
dtype: object

"scissors'],

Random values and Pandas

from numpy.random import choice

random Series
DataFrame(choice(["rock", "paper", "scissors'],

))

| —

0 1

0 paper rock
1 scissors rock
2 rock rock
3 scissors paper
4

rock scissors

Demo: exploring bias

choice(["rock", "paper", "scissors'"])

Question I: how can we make sure the randomization isn't biased?

40 -

30 -

20

10

paper -
SCISSOIS -
rock -

Demo: exploring bias

choice(["rock", "paper", "scissors'"])

Question I: how can we make sure the randomization isn't biased?

Question 2: how can we make it biased (if we want it to be)?

80 A
60 -

40 - P=[...]

20 -

rock A
paper -
SCISSOIS -

Random Strings vs. Random Ints

from numpy.random import choice, normal

: rock, paper, Or SCissoOrs
choice(["rock", "paper", "scissors'"])

: 0, 1, or 2
choice ([0, 1, 2])

: 0, 1, or 2
choice(3)

N

random non-negative int
that is less than 3

Outline

choice()

bugs and seeding
significance
histograms

normal()

Example: change over time

s = Series(choice(1l0, size=5)) i
6.

0 6

1 7 i

2 7 4 -

3 3 il

4 1

dtype: int64 2l
1-

s.plot.line()

percents = []
for 1 in range(l, len(s)):
diff = 100 * (s[i] / s[i-1] - 1)
percents.append(diff)
Series(percents).plot.line()

can you identify the bug in the code?

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Example: change over time

s = Series(choice(1l0, size=5))
0 9 8
1 1 6
2 0
3 8 il
4 8
dtype: inté64 >
s.plot.line() "
0 1 2 3 4

percents = []
for 1 in range(l, len(s)):
diff = 100 * (s[i] / s[i-1] - 1)

percents.append(diff)
. . /Library/Frameworks/Python. framework/Versions/3.7/1ib/
Seriles (percents). plOt .line () python3.7/site-packages/ipykernel launcher.py:3: Runti
meWarning: divide by zero encountered in long scalars
This is separate from the ipykernel package so we ca
n avoid doing imports until

can you identify the bug in the code?

Not all bugs are equal!

scary bugs "nice"” bugs

non-deterministic
system related
randomness

| deterministic (reproducible)
geedingd

small data

Qs syntax
% y
runtime

large data

semantic

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Pseudorandom Generators

"Random" generators are really just pseudorandom

M o84 559 [629 0192 18350 ... 0
37 235 foo8 | 720767 0 ... 0

168 | 527 /493 584 534 | ... |
2 2 B3 G5 5 e

Pseudorandom Generators

"Random" generators are really just pseudorandom

684 | ssPomen | 192 835 | ... |

In [39]: 1 choice(1000, size=3)]

Out[39]: array([684,559,629])

168 | 527 | 493 | 584 |53 ... |

2 2 B3 5 O e

Pseudorandom Generators

"Random" generators are really just pseudorandom

seeds \ What if | told you that you can choose your track?

t00: 684 |559 §629 |192 J835 ... |

or: 37 §235 Joos | 72 f767 ... |

02 168 | 527 | 493 |584 |534 ... |

2 2 B3 5 O e

Seeding

What if | told you that you can choose your track?

5 s o] I np.random.seed(220)
2 choice (1000, size = 3)

Out[2]: array([883, 732, 15])
in [3]: I np.random.seed(220)
2 choice (1000, size = 3)
Out[3]: array([883, 732, 15])
In [4]: I np.random.seed(220)
2 choice (1000, size = 3)

Out[4]: array([883, 732, 15])

Seeding

Common approach for simulations:
|. seed using current time

2. print seed
3. use the seed for reproducing bugs, as necessary

In [28]: 1 import time
2 now = int(time.time())
print("seeding with", now)
np.random.seed (now)
choice (1000, size=3)

seeding with 1556673136

Out[28]: array([352, 734, 362])

Outline

choice()

bugs and seeding
significance
histograms

normal()

In a noisy world, what is noteworthy?

TOUR OF ACCOUNTING ARE

YOU

SURE
THAT'S
RANDOM?

THAT'S THE
PROBLEM
WITH RAN-
DOMNESS:
YOU CAN
NEVER BE
SURE.

NINE NINE
NINE NINE
NINE NINE

OVER HERE
WE HAVE OUR

RANDOM NUMBER
GENERATOR.

yo(&slolo 2001 United Feature Syndicate, Inc.

www.dilbert.com scottadams@aol.com

https://dilbert.com/strip/2001-10-25

https://dilbert.com/strip/2001-10-25

Is this coin biased?

Call shenanigans!?

51 49 a statistician might say we're
trying to decide if the evidence
that the coin isn't fair is

whoever has the coin cheated
(it's not 50/50 heads/tails)

Is this coin biased?

Call shenanigans! No.

Call shenanigans?! Yes.

I T Note: there is a non-zero probability that a fair
(s 95) coin will do this, but the odds are slim

large skew is good evidence of shenanigans

Call shenanigans! No.

Call shenanigans?! Yes.

('55 million 45 million) small skew over large samples is good evidence

Demo: CoinSim

Call shenanigans!?

60 40

we got |10 more heads than we expect on average
how common is this?

Strategy: simulate a fair coin

|. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above |0K times

(50,(61,) 51, 44, 39, 43, 51, 49, 49,(38,) ...]

| | more |2 less

Outline

choice()

bugs and seeding
significance
histograms

normal()

Frequencies across categories

bars are a good way to view frequencies across categories

s = Series(["rock", "rock", "paper",
"scissors", "scissors', "scissors'])

s.value counts().plot.bar(color="orange")

40 -

30 -

20

10

paper
SCISSOIS -
rock A

Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9])

s.value counts().plot.bar(color="orange")

click to scroll output; double click to hide
.\

2.3

1.0

0.5

0.0

o o8]

numbers not ordered

Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series([O0, O, 1, 8, 9, 9])

s.value counts().sort index().plot.bar(color="orange")

2.0 -

| B

1.0

LS

0.0

— (e 0) (o)}

gap between | and 8 not obvious

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0, O, 1, 8, 9, 91])

s—vatue—counts()-sort—index()-ptot-bar(y

s.plot.Hist()
0.0 L : : : ‘
0 2 4 6 8

this kind of plot is called a histogram

Frequency
[- N
o wu o

o
un

Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.plot.hist ()
0.0 L

a histogram "bins™ nearby numbers to create discrete bars

both 0 and 0.1

Frequency
[- N
o wu o

o
un

8

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, 0, 1, 8, 9, 9.2])

s—vatue—counts()-sort—index()-ptot-bar(y
s.plot.hist()

0.0 L : , : ‘
0 2 4 6 8

we can control the number of bins

Frequency
[- N
o wu o

o
un

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, 0, 1, 8, 9, 9.2])

s.plot.hist(bins=3)

3.0/

2.5 ;
2.0 -
g
315-
L
1.0

0.5

0.0- ,

0 2 4 6 8

too few bins provides too little detail

Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([0.1, 0, 1, 8, 9, 9.2])

s.plot.hist()
1.0
0.8 1
9
§ 0.6 -
o
g 0.4
0.2
0.0- ,
0 2 4 6 8

too many bins provides too much detail (equally bad)

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, 0, 1, 8, 9, 9.2])

s—vatue—counts()-sort—index()-ptot-bar(y
s.plot.hist()

0.0 L : , : ‘
0 2 4 6 8

pandas chooses the default bin boundaries

Frequency
[- N
o wu o

o
un

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, 0, 1, 8, 9, 9.2])

s—vatue—counts()-sort—index()-ptot-bar(y
s.plot.hist()

2.0 -
0.0 L . :
0 2 4 6 8 10

we can override the defaults

Frequency
b b
o (O]

o
wn

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, 0, 1, 8, 9, 9.2])

s—vatue—counts()-sort—index()-ptot-bar(y
s.plot.hist()

2.0 -
0.0 L . :
0 2 4 6 8 10

this is easily done with range

Frequency
b b
o (O]

o
wn

Demo: Visualize CoinSim Results

800 -

Frequency
S (@)}
(- (-
(- o

N
(-
o

0 20 40 60 80 100
number of heads (out of 100)

numpy can directly

generate random this shape resembles what we often call a

numbers fitting a (normal distribution Jor a "bell curve”
normal distribution

in general, if we take large samples enough
times, the sample averages will look like this
(we won't discuss exceptions here)

Outline

choice()

bugs and seeding
significance
histograms

normal()

normal

from numpy.random import choice, normal
import numpy as np

for 1 i1n range(1l0):
print(normal()) Output:

-0.18638553993371157
0.02888452916769247
average is 0 (over many calls) 1.2474561113726423
numbers closer to 0 more likely |-0.5388224399358179
x just as likely as x -0.45143322136388525

-1.4001861112018241
0.28119371511868047

0.2608861898556597
-0.19246288728955144
0.2979572961710292

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist ()

Frequency

normal

from numpy.random import choice, normal
import numpy as np

s = Series(normal(size=10000))

s.plot.hist(bins=100)

