[220 / 319]
 Operators
 Meena Syamkumar
 Andy Kuemmel

Learning Objectives

- Run Python code using:
- Command line
- Idle
- Jupyter Notebook

Evaluate:

- numeric expressions containing mathematical operators (e.g.,"+" and "-")
- string expressions containing string operators and escape characters

Recognize examples of different Python data types:

- int, float, str, bool

Evaluate:

- expressions containing comparison operators (e.g.," $==$ " and " $>$ ")
- Boolean expressions containing the operators "and","or","not"
- mixed expressions using the correct order of operations

Today's Outline

Software

- Interpreters
- Editors
- Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

What you need to write/run code

An interpreter

- Python 3 (not 2!)
- Some extra packages (installed with pip)

An editor

- Which one doesn't matter much
- idle comes with Python

Jupyter Notebooks contain both

- installed with pip

Interpreter

A program that runs a program

- Translates something the human likes (nice Python code) to something the machine likes (ONEs and ZEROs)

You were an interpreter when you did the pseudocode worksheets!

Interpreter

A program that runs a program

- Translates something the human likes (nice Python code) to something the machine likes (ONEs and ZEROs)

You were an interpreter when you did the pseudocode worksheets!

Interpreter

A program that runs a program

- Translates something the human likes (nice Python code) to something the machine likes (ONEs and ZEROs)

You were an interpreter when you did the pseudocode worksheets!

Interpreter

A program that runs a program

- Translates something the human likes (nice Python code) to something the machine likes (ONEs and ZEROs)

You were an interpreter when you did the pseudocode worksheets!

Interpreter

A program that runs a program

- Translates something the human likes (nice Python code) to something the machine likes (ONEs and ZEROs)

Interpreter

A program that runs a program

- Translates something the human likes (nice Python code) to something the machine likes (ONEs and ZEROs)

Python Code

Editor

Program for typing code

- Different editors can open the same .py files (Python programs) (like different browsers can show the same page)

Jupyter Notebooks

Tool for mixing analysis code with other things (e.g., documentation, images, tables, etc.)

In $[35]:$| \#q22 |
| :--- |
| df $=$ pd.read_sql(""" |
| SELECT continent, count() as num_countries |
| from countries_table |
| group by continent |
| ORDER BY num_countries, continent |
| ""n, conn).set_index("continent") |

ax $=$ df.sort_index().plot.bar()
ax.set_ylabel("number of countries")
ax.set_xlabel("n)

Out[35]: Text(0.5, 0, '')

out [35]: Text(0.5, 0, 11)
notebooks breakup code into "cells" containing Python code
visuals produced by the code are interleaved

3 ways we'll run Python

I. interactive mode

```
    ty-mac:~$ python
    Python 3.8.8 (default, Apr 13 2021, 12:59:45)
    [Clang 10.0.0 ] :: Anaconda, Inc. on darwin
    Type "help", "copyright", "credits" or "license" for more information.
>>> 1 + 1
2
triple arrows mean Python code runs as you type it
```

2. script mode the interpreter program is named "python"; run it
ty-mac:~\$ python my_program.py
the name of the file containing your code (called a "script")
3. notebook "mode"
is passed as an argument to the python program
ty-mac:~\$ jupyter notebook
open Jupyter in a web browser

Today's Outline

Software

- Interpreters
- Editors
- Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

Today's Outline

Software

- Interpreters
- Editors
- Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

Order of Simplification

Python works by simplifying, applying one operator at a time

$$
\begin{aligned}
& 3 * 3+2 * 2+16 *(1 / 2) \\
& 3 * 3+2 * 2+16 * *(0.5)
\end{aligned}
$$

Rules

- First work within parentheses
- Do higher precedence first
- Break ties left to right

Order of Simplification

Python works by simplifying, applying one operator at a time

$$
\begin{aligned}
& 3 * 3+2 * 2+16 * *(1 / 2) \\
& 3 * 3+2 * 2+16 * *(0.5) \\
& 3 * 3+2 * 2+4
\end{aligned}
$$

Rules

- First work within parentheses
- Do higher precedence first
- Break ties left to right

Order of Simplification

Python works by simplifying, applying one operator at a time

$$
\begin{aligned}
& 3 * 3+2 * 2+16 * *(1 / 2) \\
& 3 * 3+2 * 2+16 * *(0.5) \\
& 3 * 3+2 * 2+4 \\
& 9+2 * 2+4
\end{aligned}
$$

Rules

- First work within parentheses
- Do higher precedence first
- Break ties left to right

Order of Simplification

Python works by simplifying, applying one operator at a time

$$
\begin{aligned}
& 3 * 3+2 * 2+16 * *(1 / 2) \\
& 3 * 3+2 * 2+16 * *(0.5) \\
& 3 * 3+2 * 2+4 \\
& 9+2 * 2+4 \\
& 9+4+4 \\
& 13+4
\end{aligned}
$$

17

Rules

- First work within parentheses
- Do higher precedence first
- Break ties left to right

Operator Precendence

these are the ones you should be learning at this point in the semester (there are a few more not covered now)

* one exception is an optimization known as "short circuiting"

Today's Outline

Software

- Interpreters
- Editors
- Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

Today's Outline

Software

- Interpreters
- Editors
- Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

Boolean Logic

The logic of truth:

- Named after George Boole
- Two values:True and False
- Three operators: and, or, and not

AND

OR

NOT

FALSE!

It's a Saturday AND

 we're attending CS 220 lecture

TRUE!

Control Flow: Remember that conditionals and loops sometimes do something. We'll use bool logic a LOT to control when we do/don't.

AND

OR

NOT

Today's Outline

Software

- Interpreters
- Editors
- Notebooks

Demos

Operator Precedence

Demos

Boolean Logic

Demos

