[220 / 319] Lists

Meena Syamkumar
Andy Kuemmel

Learning Objectives Today

Lists, the mutable sequence that can hold ANYTHING!

Sequence stuff
® indexing, slicing, for loops

® len, in, concatenation, multiplication

Chapter 10 of Think Python

Mutating!
® update, append, pop, sort

Switching between strings and lists
® split, join

Today's Outline

From Strings to Lists

More Sequence Capabilities
Difference |: Flexibility of Types
Difference 2: Mutability

Transforming between Strings and Lists

A string is a sequence of characters

indexing: access one value slicing: extract sub-sequence

| l
S) 5 G0 G 8 W €5 25 E5 SN S

for loop: execute for each value

Things we can do with sequences
® indexing
® slicing
® for loop

A string is a sequence of characters

>>> msg = “hi world!"”
>>> msg[1l]

lil

>>> msqg[3]

e

Things we can do with sequences
®* indexing
® slicing
® for loop

A string is a sequence of characters

>>> msg = “hi world!"”
>>> msg[3:]

‘world!’

>>> msg[3:-1]

‘world’

Things we can do with sequences
® indexing
® slicing
® for loop

A string is a sequence of characters

>>> msg = “hi world!"”
>>> for ¢ 1n msg:

print (c)

--

Things we can do with sequences
® indexing
® slicing
®* for loop

- 0. K O s

A string is a sequence of characters

sequence of characters

AN
>>> msqg = '|'[hi world !] '|' str syntax
start with end with
quote quote

What if we want a sequence, of something
other than characters!?

Use a Python L1st, with any items we want!

A list is a sequence of anything

>>> msg = “hi world!” str syntax
>>> nums = [|122, 11, 33| list syntax
sequence
square bracket of values, square bracket
instead of quote comma instead of quote
separated

What if we want a sequence, of something
other than characters!?

Use a Python L1st, with any items we want!

A list is a sequence of anything

>>> nums = [22, 11, 33]
>>> nums|[0]
22

>>> nums|[-1]
33

Things we can do with sequences
®* indexing
® slicing
® for loop

A list is a sequence of anything

>>> nums = [22, 11, 33]
>>> (22, 11, 33]1[1]
11

seeing brackets for both creating lists and indexing often
confuses new coders!

Things we can do with sequences
®* indexing
® slicing
® for loop

A list is a sequence of anything

>>> nums = [22, 11, 33]
>>> nums[1l:]
[11, 33]

>>> nums|[3:]

[]

Things we can do with sequences
® indexing
® slicing
® for loop

A list is a sequence of anything

>>> nums = [22, 11, 33]
>>> for X 1n nums:
print (x)

22
11

33

Things we can do with sequences
® indexing
® slicing
®* for loop

Demo: Finding a Sum

Goal: write a function to add a list of numbers

Input:
® Python list containing floats

Output:
® Sum of the numbers

Example:

>>>nums = [1, 2, 3.5]
>>> add_nums(nums)

6.5

>>>add _nums([20, 30.1])
50.1

Today's Outline

From Strings to Lists

More Sequence Capabilities
Difference 1: Flexibility of Types
Difference 2: Mutability

Transforming between Strings and Lists

Cool stuff we can do with strings-and-lists

any s€quence
a indexing

a slicing

e concatenation
O
0 multiply by an int

4. len(sequence)
string list

>>> msqg = “321go0” >>> 1tems = [99,11,77,55]
>>> len(msqg) >>> len(items)
5 4

5. concatenation

string list
>>> msqg = “321go0” >>> 1tems = [99,11,77,55]
>>> msg + “111"” >>> 1tems + [1,2,3]

1321go! ! !’ [99,11,77,55,1,2,3]

string

>>> msg = “321go”
>>> ‘g’ 1n msg
True

>>> ‘'z’ in msg
False

list

>>> 1tems = [99,11,77,55]
>>> 11 in i1tems

True

>>> 10 in i1tems

False

/. multiply by int

string list
>>> msqg = “321go0” >>> 1tems = [99,11,77,55]
>>> msg * 2 >>> 1tems * 2

1321g0321go’ (99,11,77,55,99,11,77,55]

strings

sequence stuff

str methods flexible types

indexing
find slicing
replace for loops .
upper/lower Ty mutation
format concatenation
etc. i

multiply by an int

now

Today's Outline

From Strings to Lists

More Sequence Capabilities
Difference 1: Flexibility of Types
Difference 2: Mutability

Transforming between Strings and Lists

ltems can be any types

string, bool, int, float

even other lists!

coding demo:

l = [True, False, 3, "hey", [1l, 2]]
for item in 1:
print(type(l))

bonus: how to extract the last item of the last item?

Example game map with list of lists

- - - - - -

i S;II

’
’

’

- - -

| (N i i
" ’ "

| (N i i
s, "S

| (N i i

’

| (N i i
" ’ "

| (N i i
" ’ "

| (N i i
" ’ "

’
’

’

- - -

]| B

’
]| B

’
]| B

’
]| B

]| E;II ,
]| E;II ,

i E;II :
i E;II :
i E;II ;

- - - - -

rows and columns
of data are useful for
more than games...

Today's Outline

From Strings to Lists
More Sequence Capabilities
Difference |: Flexibility of Types

Difference 2: Mutability

Transforming between Strings and Lists

Mutability

Definition

® atype is mutable if values can be changed
® atypeis immutable if values cannot be changed

list
(mutable)

str
(immutable)

set variable to new value

\

careful! this is is about values, not variables
(variables can ALWAYS be changed)

change existing value

nums = [1,2] nums = [2,2,9]
nums = [3,4] nums[2] = 0

S — IIABII S — ll229l|

S = "CD" S[2] — lIOll

S += IIEII

Ways to mutate a list

Common Modifications
® |[index] = new_value
L.append(new_value)
L.extend(another_list)
L.pop(index)

°
°
°
® |.sort()

Example code:

L =13,2,1]
L.append(0)
L.extend([9, 8])
L[1l] = -1
L.sort()
L.pop(0)

Demo

Today's Outline

From Strings to Lists

More Sequence Capabilities
Difference I: Flexibility of Types
Difference 2: Mutability

Transforming between Strings and Lists

split method

N
|

"a quick brown fox"
I = S.split(" ")

separator

"a quick brown fox" » ["a", "quick", "brown", "fox"]

oin method

L)

L — [IIMH, ||SS||’ llSSu, IIPPII’ " Il]
"I".join(L)

0p
|

separator

"M", "SS", ”SS", IIPPll, 1" ll] MISSISSIPPI

http://www .city-data.com/picfilesc/picc25424 .php

http://www.city-data.com/picfilesc/picc25424.php

join method

L —_ [IIMII, ||SS||’ llSSn, IIPPII’ " Il]
) jOin (L) what if removed?

0p
|

separator

"M", "SS", ”SS", IIPPll, 1" ll] MISSISSIPPI

http://www .city-data.com/picfilesc/picc25424 .php

http://www.city-data.com/picfilesc/picc25424.php

join method

L — [IIMH, ||SS||’ llSSu, IIPPII]
"I".join(L)

0p
|

separator

"M", "SS", ”SS", IIPPll, 1" ll] MISSISSIPP

PO % i =
*':’;n\‘g)’/‘ék‘immnmmM'ﬂimmgﬂ.n;s& A,

http://www .city-data.com/picfilesc/picc25424 .php

http://www.city-data.com/picfilesc/picc25424.php

Demo: Censoring Profanity

Goal: write a function to replace curse words with stars

Input:
® A profane string

Output:

® A sanitized string

Example:

>>> censor(“OMG this class is so fun”)

“*% this class is so fun’
>>> censor(*“the midterm was darn tough”)

‘the KRSk was KRk tough’

Demo: Censoring Profanity

Goal: write a function to replace curse words with stars

Input:
® A profane string

Output:

® A sanitized string

Example:

>>> censor(“OMG this class is so fun”)

“* this class is so fun’
>>> censor(*“the midterm was darn tough”)

‘the RAKFRKK was KKK tough’

‘\ K replaces offensive words like “darn”

and “midterm” with stars

Demo: Finding a Median — Next lecture...

Goal: write a function to find the median of a list of numbers

Input:
® Python list containing floats

Output:
® The median

Example:

>>>nums = [1,5,2,9,8]

>>> median(nums)

5

>>> median([1, 20, 30, 100])
25

Challenge (partly covered in future lecture)

|. Command line arguments, as a list

import sys
argl = sys.argv[1]
arg2 = sys.argvl[2]

2. Random values, from a list

import random
random.choice(["rock", "paper", '"scissors'"])

