[220 / 319] Dictionary
Nesting

Meena Syamkumar
Andy Kuemmel

Learning Objectives Today

More dictionary operations
® len, in, for loop
® d.keys(), d.values()
® defaults for get and pop

list
: : . : dict
Syntax for nesting (dicts inside dicts, etc) .
® indexing/lookup dict
® step-by-step resolution dict
Understand common use cases for nesting
® binning/bucketing (L1st in)
® a more convenient table representation (in L1st)

® transition probabilities with Markov chains (in)4\

one of the most common

.)
data analysis tasks we’ll generate random

English-like texts

Today's Outline
Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Probability Tables and Markov Chains (dict of dict) — self-interest
study; not required for quizzes and exams

Creation of Empty Dict - self-review

Non-empty dict:
d — {llall: llalpha", llbll: llbetall}

Empty dict (way I):
d = {}

Empty dict (way 2):

d = dict() # special function called constructor

similar for lists: L = []

similar for lists: L = list() # special function called constructor

similar for sets: s = set() # special function called constructor

len, in, for - self-review

num words {0:“zero”, l:"one”, 2:"two”, 3:"three”}

print (len(num words))

4

print (1l in num words) * True

print(“one” in num words)

for x 1n num words:

» False
(it is only checking keys, not vals)

print(x, num words[x]) 0 zero
| one
(2 two

3 three

you can iterate over values
by combining a for loop with lookup

Extracting keys and values

num words {0:"zero”, l:"one”, 2:"two”, 3:"three”}

print (type(num _words)) <class 'dict_keys">

print (type(num _words <class "dict_values'>

don’t worry about these
new types, because we
can force them to be lists

Extracting keys and values

num words {0:"zero”, l:"one”, 2:"two”, 3:"three”}

print(type(num_words)) * <class 'dict_keys">
* <class 'dict_values">

print (list(num words)) * [o, I, 2, 3]

[“zero”, “one”’
“two”, “three”]

print (type(num words))

print(list(num words))

Defaults with get and pop

suffix = {1l:“st”, 2:"nd", 3:"rd")
xsuffix.pop(O) # delete fails, because no key 0

xsuffix[4] # lookup fails because no key 4

Defaults with get and pop

suffix = {l:“st”, 2:7nd”, 3:"rd"}

specify a default if
key cannot be found

suffix.pop(0, “th”) # returns “th” because no key 0
XSuffix[él] # lookup fails because no key 4

suffix.get (4, “th”) # returns “th” because no key 4

(

specify a default if
key cannot be found

Defaults with get and pop

suffix = {1l:“st”, 2:”nd”, 3:"rd"}

for num in range(6):
print(str(num) + suffix.get(num, “th”))

och
Ist

2nd
3rd
4th
5th

Today's Outline
Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Probability Tables and Markov Chains (dict of dict) — self-interest
study; not required for quizzes and exams

Bucketizing/Binning

all

Bucketizing/Binning

all * * LECOO | |9|.y
rows loop

Bucketizing/Binning

all .'»} for II'>
rows loop

o

LECOOI

Bucketizing/Binning

all * * LEcooz||8|.y
rows loop

Bucketizing/Binning

* for *
loop

dict

all
rows

LECOOZ

Bins with lists and dicts

bins =
all data ”LEC{OOI”: [
["LECO00I1”, 19, ”CS”], » avg 19
rows = [1

["LECO001”, 19, ”CS”],
[”’LEC0027, 18, “Eng”],
[”’LEC0027, 21, “Econ”],
[”’LEC003”, 25, ”Stat”],

»LEC002”: [
[”LEC002”, 18, “Eng”],

[”’LEC0027, 21, “Econ”],» avg 19.5
[”’LEC002”, , ”DS”],

[”’LEC002”, , ”DS”], 1s
[”’LEC003”, , ”DS”], »LEC003”: [
] [”LEC003”, 25, ”Stat”],
[’LEC003”, , ”DS”], » avg 25
]

}

Demo |: Average Age per Section

Goal: print average age of students in each section

Input:

® (CS§220 Information survey

Output:

® Average age within each section

Example:

SECO001: 19
SECO002: 19.5
SECO003: 25

Today's Outline
Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Probability Tables and Markov Chains (dict of dict)

Table Representation

list of list representation

header = [“name”, “xX", “y"]
rows = |
[“Alice”, 30, 20],
[“Bob”, 5, 117,
2 — [“Cindy”, -2, 50],
] t
2

rows[2] [header.index (“y")]

[

list of dict representation

{“name” :“Alice”, *“x":30,
{”name":”BOb", ”X":S,

2 —_ {”name":”CindY”, ”X":_zl

]

rows[2][“y"]

IIY":ZO} ,

IIY" . 11} ,

IIYII:SO} ,
1

Demo 2: Table Transform

Goal: create function that transforms list of lists table
to a list of dicts table

Input:
® List of lists (from a CSV)

Output:
® List of dicts

Example:

>>> header [“ ’” 9 ”]
>>> rows = [[1,2], [3 41]

>>> transform(header, rows)
[{“ ”. ’ €6_ 9 2} {“X” 3 c¢_ .9 4}]

Today's Outline
Dictionary Ops

Binning (dict of list)

Table Representation (list of dict)

Probability Tables and Markov Chains (dict of dict) — self-interest
study; not required for quizzes and exams

Challenge: Letter Frequency

53++1t305))6%;4826)4+.)4+);806%;4818
160))85;;]8%;:+*8183(88)5*%t;46(;88%96

0.18

2:8)%+(;485);5*%12:*%(;4956*%2(5*—4)8

0.16

18*;4069285);)61t8)4++;1(+9;48081;8:8+%

0.14

1;48185;4)4851t528806*81(+9;48; (88;4

0.12
0.1 (¥?234;48)4+%+;161;:188;%7?;
0.08 can you guess what 8 represents?
0.06
0.04

0.02

8 : 4%+) *5%6 (1t1t092:327279—.

https://en.wikipedia.org/wiki/The_Gold-Bug

Challenge: Letter Frequency

0.18 0.14

0.16
0.12

0.14

0.1
0.12

01 0.08

0.08 0.06

0.06

0.04
0.04
0.02
0.02
0 0
8 ; 4+) *56 (1t092:37?2¢9T—. etaoinshrdlcumwfgypbvkijxgqgz
letters symbols

how to compute these!

https://en.wikipedia.org/wiki/The_Gold-Bug

Challenge: Letter Frequency

Goal: if we randomly pick a word in a text, what is the probability
that it will be a given letter?

Input:

® Plaintext of book (from Project Gutenberg)

Output:

® The portion of letters in the text that are that letter

Example:

text: AAAAABBCCC
A: 50%
B: 20%
C: 30%

https://en.wikipedia.org/wiki/The_Gold-Bug

Sequence Data

Consider this sequence: “the quick tiger is quiet”

What letter likely comes after “t” in this text?

Next Letter Probability

h ... 50% dict for “t”:
L 0% {*“h”: 0.5, “i”: 0.5}
a 0%
0%

What letter likely comes after “q’” in this text?

Next Letter Probability

dict for “q”:
... “u”: 1.0}

Sequence Data

Organize all the dicts with a dict: Imagine a next-letter probability

dictionary for every letter
probs = {

‘u”: {*17: 1.0}, dict for “u”:

“i1": 1.0}

dict for “t”:
} {“h”: 0.5, “1": 0.5}

dict for ¢i”:
{“c": 0.25, "“g": 0.25,
“s": 0.25, "e": 0.25}

dict for “q”:
“u”: 1.0}

Sequence Data

Organize all the dicts with a dict: Imagine a next-letter probability

dictionary for every letter
probs = {
“u”: {“1": 1.0},
“t": {*h": 0.5, “1": 0.5}
“1"

dict for “u”:
“i1": 1.0}

ug”: {"u”: 1.0}, dict for “t”:
{*h”: 0.5, "1”: 0.5}

dict for “i”:
{“c”: 0.25, "“g”": 0.25,
“s": 0.25, "e": 0.25}

dict for “q”:
“u”: 1.0}

Sequence Data

Organize all the dicts with a dict: Imagine a next-letter probability

dictionary for every letter
probs = {
“u”: {“1": 1.0},
“t": {*h": 0.5, “1": 0.5}
“1"

dict for “u”:
“i1": 1.0}

0.25},
ug”: {"u”: 1.0}, dict for “t”:
{*h”: 0.5, "1”: 0.5}

dict for “i”:
{“c”: 0.25, "“g”": 0.25,
“s": 0.25, "e": 0.25}

[“e”] » 0.25

There is a 25% probability that

€6y o €6 _ Y

the letter following an “i” is an “e

dict for “q”:
“u”: 1.0}

Vocabulary

(probs = {
”U": uin: 1.0},

ugemre "h"e 0.5, “1": 0.5 . ..
win, { ' ; The collection of transition

) probabilities like this is
0-255, sometimes called a
llqll: {llu": 1.0},

“stochastic matrix’

Processes that make probabilistic transitions
like this (e.g., from one letter to the next) are
called “Markov chains”

Random Text Generation

XFOML RXKHRJFFJUJ
ZLPWCFWKCYJ FFJEYVKCQSGHYD
QPAAMKBZAACIBZLHJQD.

OCRO HLI RGWR NMIELWIS EU LL

which looks

closest to NBNESEBYA TH EEI ALHENHTTPA
English? OOBTTVA NAH BRL.
ON IE ANTSOUTINYS ARET
INCTORE ST BE S DEAMY ACHIN D
ILONASIVE TUCOOWE AT

TEASONARE FUSO TIZIN ANDY
TOBE SEACE CTISBE.

Examples from A Mind at Play, by Soni and Goodman

Random Text Generation

XFOML RXKHRJFFJUJ
all letters equally likely ZI PWCFWKCYJ FFJEYVKCQSGHYD

QPAAMKBZAACIBZLHJQD.

weighted random, basea OCRO HLIRGWR NMIELWIS EU LL
on frequency in a text NBNESEBYA TH EEI ALHENHTTPA
(implement with diCt) OOBTTVA NAH BRL

ON IE ANTSOUTINYS|ARE|T
- INCTORE ST|BE[S DEAMY ACHIN D
probability of each letter
based on previous letter ILONASIVE TUCOOWE|AT
(implement with dict of dicts) TEASONARE FUSO TIZINIANDY
TOBE SEACE CTISBE.

Examples from A Mind at Play, by Soni and Goodman

Hypothetical Use Case

DNA sequences

GATACAGATACAGATACA

stochastic model

GCTATAGCTATAGCGCGC

AAAATTTTAAAATTTTAAAA

APPLICATIONS NOTE " 1o ssmimamatesronn s

Sequence analysis

GenRGenS: software for generating random genomic sequences
and structures

Yann Ponty’, Michel Termier® and Alain Denise'* CATCATC?TC?TCATC?TCAT
LRI, UMR CNRS 8623, Université Paris-Sud 11, F91405 Orsay cedex, France and ?2IGM, UMR CNRS 8621,
Université Paris-Sud 11, F91405 Orsay cedex, France CATCATCATCATCATCATCAT

Received on February 21, 2006; revised on March 13, 2006; accepted on March 21, 2006
Advance Access publication March 30, 2006

Associate Editor: Martin Bishop synthetic sequences’
filling in gaps

Challenge: Conditional Letter Frequency

Goal: if we look at given letter, what is the next letter likely to be!?

Input:

® Plaintext of book (from Project Gutenberg)

Output:

® Transition probabilities
® Randomly generated text, based on probabilities

Weighted Random

transitions = {
“up”: 0.2,
“down”: 0.1,
“flat”: 0.7

}

X = random.random()

assume 0.5

flat “wins”

0.2

04 0.6
probabilities

0.8

Weighted Random

transitions = {

“up”: 0.2,

“down”: 0.1,

“flat”: 0.7
} down “wins”
X = random.random()

assume 0.25

|

0 0

.2

IIIIIIIIIHIIIIIIIII
0.4 0.6 0.8 l

probabilities

Weighted Random

transitions =
“up”: 0.2
“down”: 0
“flat”: 0

{

4

X
|

4

1
7

_ 0 0.2 0.4 0.6 0.8 |
X = random.random()
assume 0.25 probabilities

end = 0
keys = [“up”, “down”, “flat”]
winner = None
for key in keys:
end += transitions[key]
if end >= x:
winner = key
break

Weighted Random

end

transitions =
“up”: 0.2
“down”: 0
“flat”: 0

{

4

X
|

4

1
7

_ 0 0.2 0.4 0.6 0.8 |
X = random.random()
assume 0.25 probabilities

end = 0

keys = [“up”, *“down”, “flat”]

winner = None

for key in keys:

» end += transitions[key] key|up
if end >= x:
winner = key end|0
break

Weighted Random

end

{ | x

transitions
“up”: 0.

2,
“down”: 0.1,
“flat”: 0.7 flat
}
0 0 0.4 0.6 0.8 l

— .2 [] [] [J
X = random.random()
assume 0.25 probabilities

end = 0
keys = [“up”, “down”, “flat”]
winner = None
for key in keys:
end += transitions[key] keylup
if end >= x:
winner = key end|0.2
break

Weighted Random

end

{ | x

transitions
“up”: 0.

2,
“down”: 0.1,
“flat”: 0.7 flat
}
0 0 0.4 0.6 0.8 l

— .2 [] [] [J
X = random.random()
assume 0.25 probabilities

end = 0
keys = [“up”, “down”, “flat”]
winner = None
for key in keys:
end += transitions[key] keylup
if end >= x:
winner = key end|0.2
break

Weighted Random

end

transitions = { ‘lf

“up”: 0.2,

“down”: 0.1,

“flat”: 0.7 flat
}
x = random.random() o 02 04 06 08 !
assume 0.25 probabilities
end = 0
keys = ["“up”, “down”, “flat”]
winner = None
for key in keys:
» end += transitions[key] key|down

if end >= x:

winner = key end|0.2

break

Weighted Random
end
transitions

{ x l
uupn: 0. ,

2 |
“down”: 0.1,
“flat”: 0.7 flat
}
0 0.2 0.4 0.6 0.8 l

down

X = random.random()

assume 0.25 probabilities
end = 0
keys = [“up”, “down”, “flat”]
winner = None
for key in keys:

end += transitions[key] key|ldown
» if end >= x:

winner = key end|0.3

break

Weighted Random
end
transitions

{ xx
“up”: 0.2,

5 |
“down”: 0.1,
“flat”: 0.7 flat
}
0 0.2 04 0.6 0.8 |

down

X = random.random()
assume 0.25 probabilities

end = 0
keys = [“up”, "“down”, “flat”]
winner = None
for key in keys:
end += transitions[key] key|ldown
if end >= x:
winner = key end|0.3
break

we randomly chose “down”

