
[220 / 319]
Objects+References

Meena Syamkumar
Andy Kuemmel

Test yourself!

A

B

C

what is the type of the following? {}

1

2

set

dict

if S is a string and L is a list, which line definitely fails?

1

2

S[-1] = "."

L[len(S)] = S

which type is immutable?

1

2

str

list

3 dict

global

foooo

webster

luny_list

everything

final_letter

apple and ada

bike deBug

name

kind

a

b

z

list

list

list

dict

dict

L

Frames:

note: quotes for strings
not shown (to simplify)

Objects and References

Observations
1. objects have a "life of their own" beyond variables or even function frames
2. here there are dict and list objects (others are possible)
3. references show up two places: as variables and values in data structures
4. technically ints and strs (and all values) are objects too in Python...

98

"zebra"

"mammal"

stack heap

this end of an
arrow is a reference

this end of an
arrow is an object

global

foooo

webster

luny_list

everything

final_letter

apple and ada

bike deBug

name

kind

a

b

z

list

list

list

dict

dict

L

Frames:

note: quotes for strings
not shown (to simplify)

Objects and References

Questions
1. why do we need this more complicated model?
2. how can we create new types of objects?
3. how can we compare objects and references?
4. how can we copy objects to create new objects?

98

"zebra"

"mammal"

stack heap

this end of an
arrow is a reference

this end of an
arrow is an object

Today's Outline

New Types of Objects
• tuple
• namedtuple
• recordclass

References
• motivation
• bugs: accidental argument modification
• “is” vs. “==”

Tuple Sequence

nums_list = [200, 100, 300]
nums_tuple = (200, 100, 300)

Like a list
• for loop, indexing, slicing, other methods

Unlike a list:
• immutable (like a string)

What is a tuple? A new kind of sequence!

if you use parentheses (round)
instead of brackets [square]

you get a tuple instead of a list

Tuple Sequence

nums_list = [200, 100, 300]
nums_tuple = (200, 100, 300)

x = nums_list[2]
x = nums_tuple[2]

Like a list
• for loop, indexing, slicing, other methods

Unlike a list:
• immutable (like a string)

both put 300 in x

Tuple Sequence

nums_list = [200, 100, 300]
nums_tuple = (200, 100, 300)

nums_list[0] = 99
nums_tuple[0] = 99

Like a list
• for loop, indexing, slicing, other methods

Unlike a list:
• immutable (like a string)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

Crashes!

changes list to
[99, 100, 300]

Why would we ever want immutability?
1. avoid certain bugs
2. some use cases require it (e.g., dict keys)

Example: location -> building mapping

buildings = {
[0,0]: “Comp Sci”,
[0,2]: “Psychology”,
[4,0]: “Noland”,
[1,8]: “Van Vleck”

}

Traceback (most recent call last):
File "test2.py", line 1, in <module>
buildings = {[0,0]: "CS"}

TypeError: unhashable type: 'list'

FAILS!

trying to use x,y coordinates as key

Example: location -> building mapping

buildings = {
(0,0): “Comp Sci”,
(0,2): “Psychology”,
(4,0): “Noland”,
(1,8): “Van Vleck”

}

Succeeds!
(with tuples)

trying to use x,y coordinates as key

A note on parenthetical characters

parentheses: (and)

brackets: [and]

braces: { and }

type of parenthesis uses
specifying order:

function invocation:

sequence indexing:

sequence slicing:

dict lookup:

list creation:

dict creation:

set creation:

(1+2)*3

f()

s[-1]

s[1:-2]

d["one"]

s = [1,2,3]

d = {"one":1, "two":2}

{1,2,3}

tuple: (1,2,3)

(1+2)

(1+2,)
tuple of size 1

Today's Outline

New Types of Objects
• tuple
• namedtuple
• recordclass

References
• motivation
• bugs: accidental argument modification
• “is” vs. “==”

See any bugs?

people=[
{"Fname": "Alice", "lname": "Anderson", "age": 30},
{"fname": "Bob", "lname": "Baker", "age": 31},

]
p = people[0]
print("Hello " + p["fname"] + " " + p["lname"])

people=[
("Alice", "Anderson", 30),
("Bob", "Baker", 31),

]
p = people[1]
print("Hello " + p[1] + " " + p[2])

1

2

dict

tuple

Vote: Which is Better Code?

people=[
{"fname": "Alice", "lname": "Anderson", "age": 30},
{"fname": "Bob", "lname": "Baker", "age": 31},

]
p = people[0]
print("Hello " + p["fname"] + " " + p["lname"])

people=[
("Alice", "Anderson", 30),
("Bob", "Baker", 31),

]
p = people[1]
print("Hello " + p[0] + " " + p[1])

1

2

dict

tuple

people=[
{"fname": "Alice", "lname": "Anderson", "age": 30},
{"fname": "Bob", "lname": "Baker", "age": 31},

]
p = people[0]
print("Hello " + p["fname"] + " " + p["lname"])

people=[
("Alice", "Anderson", 30),
("Bob", "Baker", 31),

]
p = people[1]
print("Hello " + p[0] + " " + p[1])

1

2

from collections import namedtuple
Person = namedtuple("Person", ["fname", "lname", "age"])
people=[

Person("Alice", "Anderson", 30),
Person("Bob", "Baker", 31),

]
p = people[0]
print("Hello " + p.fname + " " + p.lname)

3

dict

tuple

namedtuple

from collections import namedtuple

Person = namedtuple("Person", ["fname", "lname", "age"])

p = Person("Alice", "Anderson", 30)

print("Hello " + p.fname + " " + p.lname)

need to import this data struct

creates a new type!

str list tupleint floatPerson Hurricane ????

name of that type

creates a object of type Person (sub type of namedtuple)
(like str(3) creates a new string or list() creates a new list)

name of that type

sequencenumbernamedtuple

from collections import namedtuple

Person = namedtuple("Person", ["fname", "lname", "age"])

p = Person("Alice", "Anderson", 30)

print("Hello " + p.fname + " " + p.lname)

can use either positional or keyword arguments to create a Person

from collections import namedtuple

Person = namedtuple("Person", ["fname", "lname", "age"])

p = Person(age=30, fname="Alice", lname="Anderson")

print("Hello " + p.fname + " " + p.lname)

can use either positional or keyword arguments to create a Person

from collections import namedtuple

Person = namedtuple("Person", ["fname", "lname", "age"])

p = Person(age=30, Fname="Alice", lname="Anderson")

print("Hello " + p.fname + " " + p.lname)

crashes
immediately

(good!)

from collections import namedtuple

Person = namedtuple("Person", ["fname", "lname", "age"])

p = Person(age=30, fname="Alice", lname="Anderson")

print("Hello " + p.fname + " " + p.lname)

Today's Outline

New Types of Objects
• tuple
• namedtuple
• recordclass

References
• motivation
• bugs: accidental argument modification
• “is” vs. “==”

mutable equivalent of a namedtuple

from collections import namedtuple

Person = namedtuple("Person", ["fname", "lname", "age"])
p = Person(age=30, fname="Alice", lname="Anderson")

p.age += 1 # it's a birthday!

print("Hello " + p.fname + " " + p.lname)

from recordclass import recordclass # not in collections!

Person = recordclass("Person", ["fname", "lname", "age"])
p = Person(age=30, fname="Alice", lname="Anderson")

p.age += 1 # it's a birthday!

print("Hello " + p.fname + " " + p.lname)

namedtuple

recordclass

which type supports birthdays mutability?

from collections import namedtuple

Person = namedtuple("Person", ["fname", "lname", "age"])
p = Person(age=30, fname="Alice", lname="Anderson")

p.age += 1 # it's a birthday!

print("Hello " + p.fname + " " + p.lname)

from recordclass import recordclass # not in collections!

Person = recordclass("Person", ["fname", "lname", "age"])
p = Person(age=30, fname="Alice", lname="Anderson")

p.age += 1 # it's a birthday!

print("Hello " + p.fname + " " + p.lname)

namedtuple

recordclass

which type supports birthdays mutability?

from recordclass import recordclass # not in collections!

Person = recordclass("Person", ["fname", "lname", "age"])
p = Person(age=30, fname="Alice", lname="Anderson")

p.age += 1 # it's a birthday!

print("Hello " + p.fname + " " + p.lname)
recordclass

pip install recordclass

need to install recordclass:

Today's Outline

New Types of Objects
• tuple
• namedtuple
• recordclass

References
• motivation
• bugs: accidental argument modification
• “is” vs. “==”

let's evolve our mental model of state!

Mental Model for State (v1)

Code:

State:

x

y

x = “hello”
y = x
y += “ world”

note: we're not drawing frame boxes for simplicity since everything is in the global frame

Mental Model for State (v1)

Code:

State:

x

y

hello

x = “hello”
y = x
y += “ world”

Mental Model for State (v1)

Code:

State:

x

y

hello

hello

x = “hello”
y = x
y += “ world”

Mental Model for State (v1)

Code:

State:

x

y

hello

hello world

x = “hello”
y = x
y += “ world”

Common mental model
• equivalent for immutable types
• PythonTutor uses for strings, etc

Issues
• incorrect for mutable types
• ignores performance

Mental Model for State (v2)

Code:

State:

x

x = “hello”
y = x
y += “ world”

references objects

“hello”

any box with an arrow is a reference
(variables are one kind of reference)

Mental Model for State (v2)

Code:

State:

x

y

x = “hello”
y = x
y += “ world”

references objects

“hello”

Mental Model for State (v2)

Code:

State:

x

y

x = “hello”
y = x
y += “ world”

references objects

“hello”

“hello world”

Mental Model for State (v2)

Code:

State:

x

y

x = “hello”
y = x
y += “ world”

references objects

“hello”

“hello world”

Mental Model for State (v2)

Code:

State:

x

y

x = “hello”
y = x
y += “ world” # y = y + “ world”

references objects

“hello”

“hello world”

Revisiting Assignment and Passing Rules for v2

RULE 1 (assignment)
x = ????
y = x # y should reference whatever x references

RULE 2 (argument passing)
def f(y):

pass

x = ????
f(x) # y should reference whatever x references

How PythonTutor renders immutable types is configurable...

Code:
x = “hello”
y = x
y += “ world”

v1

v2

Today's Outline

New Types of Objects
• tuple
• namedtuple
• recordclass

References
• motivation
• bugs: accidental argument modification
• “is” vs. “==”

Why does Python have the complexity of
separate references and objects?

Why not follow the original organization we saw
for everything (i.e., boxes of data with labels)?

Reason 1: Performance

Code:

State:

x

y

x = “this string is millions of characters…”
y = x # this is fast!

references objects

“this string is millions of …”

Reason 1: Performance

Code:

State:

x

y

x = “this string is millions of characters…”
y = x # this is fast!

references objects

“this string is millions of …”

Reason 2: Centralized Updates

State:

alice

from recordclass import recordclass

Person = recordclass("Person", ["name", "score", "age"])

alice = Person(name="Alice", score=10, age=30)
bob = Person(name="Bob", score=8, age=25)
winner = alice

alice.age += 1
print("Winner age:", winner.age)

references objects

bob

winner

name:Alice | score:10 | age:30

Reason 2: Centralized Updates

State:

alice

from recordclass import recordclass

Person = recordclass("Person", ["name", "score", "age"])

alice = Person(name="Alice", score=10, age=30)
bob = Person(name="Bob", score=8, age=25)
winner = alice

alice.age += 1
print("Winner age:", winner.age)

references objects

bob

winner

name:Alice | score:10 | age:30

name:Bob | score:8 | age:25

Reason 2: Centralized Updates

State:

alice

from recordclass import recordclass

Person = recordclass("Person", ["name", "score", "age"])

alice = Person(name="Alice", score=10, age=30)
bob = Person(name="Bob", score=8, age=25)
winner = alice

alice.age += 1
print("Winner age:", winner.age)

references objects

bob

winner

name:Alice | score:10 | age:30

name:Bob | score:8 | age:25

Reason 2: Centralized Updates

State:

alice

from recordclass import recordclass

Person = recordclass("Person", ["name", "score", "age"])

alice = Person(name="Alice", score=10, age=30)
bob = Person(name="Bob", score=8, age=25)
winner = alice

alice.age += 1
print("Winner age:", winner.age)

references objects

bob

winner

name:Alice | score:10 | age:31

name:Bob | score:8 | age:25

Reason 2: Centralized Updates

State:

alice

from recordclass import recordclass

Person = recordclass("Person", ["name", "score", "age"])

alice = Person(name="Alice", score=10, age=30)
bob = Person(name="Bob", score=8, age=25)
winner = alice

alice.age += 1
print("Winner age:", winner.age)

references objects

bob

winner

name:Alice | score:10 | age:31

name:Bob | score:8 | age:25

prints 31, even though we didn’t
directly modify winner

Today's Outline

New Types of Objects
• tuple
• namedtuple
• recordclass

References
• motivation
• bugs: accidental argument modification
• “is” vs. “==”

References and Arguments/Parameters

Python Tutor always illustrates references with an arrow
for mutable types

Thinking carefully about a few examples will prevent many
debugging headaches…

Example 1: reassign parameter

def f(x):
x *= 3
print("f:", x)

num = 10
f(num)
print("after:", num)

interactive

exercises

Example 2: modify list via param

def f(items):
items.append("!!!")
print("f:", items)

words = ['hello', 'world']
f(words)
print("after:", words)

interactive

exercises

Example 3: reassign new list to param

def f(items):
items = items + ["!!!"]
print("f:", items)

words = ['hello', 'world']
f(words)
print("after:", words)

interactive

exercises

Example 4: in-place sort

def first(items):
return items[0]

def smallest(items):
items.sort()
return items[0]

numbers= [4,5,3,2,1]
print("first:", first(numbers))
print("smallest:", smallest(numbers))
print("first:", first(numbers))

interactive

exercises

Example 5: sorted sort

def first(items):
return items[0]

def smallest(items):
items = sorted(items)
return items[0]

numbers= [4,5,3,2,1]
print("first:", first(numbers))
print("smallest:", smallest(numbers))
print("first:", first(numbers))

interactive

exercises

Today's Outline

New Types of Objects
• tuple
• namedtuple
• recordclass

References
• motivation
• bugs: accidental argument modification
• “is” vs. “==”

are two objects equivalent?

are two references equivalent?

== and is

State:

x

references objects

y

z

w [1]

[2]

[2]

w = [1]
x = [2]
y = [2]
z = y

observation: x and y are equal to each other,
but y and z are MORE equal to each other

== and is

State:

x

references objects

y

z

w [1]

[2]

[2]

w = [1]
x = [2]
y = [2]
z = y

w == x
False

== and is

State:

x

references objects

y

z

w [1]

[2]

[2]

w = [1]
x = [2]
y = [2]
z = y

y == z

== and is

State:

x

references objects

y

z

w [1]

[2]

[2]

w = [1]
x = [2]
y = [2]
z = y

x == y
True

because x and y refer to
two equivalent objects

== and is

State:

x

references objects

y

z

w [1]

[2]

[2]

w = [1]
x = [2]
y = [2]
z = y

x is y

new operator to check if two
references refer to the same object

== and is

State:

x

references objects

y

z

w [1]

[2]

[2]

w = [1]
x = [2]
y = [2]
z = y

x is y
False

== and is

State:

x

references objects

y

z

w [1]

[2]

[2, 3]

w = [1]
x = [2]
y = [2]
z = y
y.append(3)
print(z) # [2,3]

y is z
True

This tells you that changes to
y will show up if we check z

Be careful with is!

a = 'ha' * 10
b = 'ha' * 10
print(a == b)
print(a is b)

Python sometimes “deduplicates” equal immutable values
• This is an unpredictable optimization (called interning)
• 90% of the time, you want == instead of is

(then you don’t need to care about this optimization)
• Play with changing replacing 10 with other numbers to see potential

pitfalls:

Conclusion

New Types of Objects
• tuple: immutable equivalent as list
• namedtuple: make your own immutable types!
- choose names, don’t need to remember positions
• recordclass: mutable equivalent of namedtuple
- need to install with “pip install recordclass”

References
• motivation: faster and allows centralized update
• gotchas: mutating a parameter affects arguments
• is operation: do two variables refer to the same object?

