
[220 / 319] Functions as 
Objects

Meena Syamkumar
Andy Kuemmel



Radical Claim:

Functions are Objects

implications:
• variables can reference functions
• lists/dicts can reference functions
• we can pass function references to other functions
• we can pass lists of function references to other functions
• ...



which line of code is most novel for us?

l1 = [1, 2, 3]
l2 = l1

def f(l):
return l[-1]

g = f

num = f(l2)



State:

references objects

Explanation: f should reference a new function object

Explanation: g should reference whatever f references

function object

1 2 3

both these calls would
have run the same code,
returning the same result:
• num = f(l1)
• num = g(l2)

l1 = [1, 2, 3]
l2 = l1

def f(l):
return l[-1]

g = f

num = f(l2)

Explanation: l1 should reference a new list object

Explanation: l2 should reference whatever l1 references

Explanation: l should reference whatever l2 references
Explanation: num should reference whatever f returns

3

l2
l1

f
g

num
linside f invocation frame



very similar (reference new object)

very similar (reference existing object)

very different (invoke vs. reference)

l1 = [1, 2, 3]
l2 = l1

def f(l):
return l[-1]

g = f

num = f(l2)



CODING DEMOS
[Python Tutor]



Function References (Part 1)

Outline
• functions as objects
• sort
• lambda



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

names.sort()

Catherine Baker

Bob Adams

Alice Clark

Alice Clark

Bob Adams

Catherine Baker

sorting tuples is done
on first element

(ties go to 2nd element)



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

names.sort()

Catherine Baker

Bob Adams

Alice Clark

Alice Clark

Bob Adams

Catherine Baker

what if we want to
sort by the last name?

or by the length of the name?



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

def extract(name_tuple):
return name_tuple[1]

names.sort(key=extract)

Catherine Baker

Bob Adams

Alice Clark



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

def extract(name_tuple):
return name_tuple[1]

names.sort(key=extract)

Catherine Baker

Bob Adams

Alice Clark

Bob Adams

Catherine Baker

Alice Clark



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

def extract(name_tuple):
return len(name_tuple[0])

names.sort(key=extract)

Catherine Baker

Bob Adams

Alice Clark



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

def extract(name_tuple):
return len(name_tuple[0])

names.sort(key=extract)

Catherine Baker

Bob Adams

Alice Clark

Bob Adams

Alice Clark

Catherine Baker



CODING DEMOS
[Jupyter notebook]



Function References (Part 1)

Outline
• functions as objects
• sort
• lambda



Example: Sorting Dictionary by keys using lambdas

• lambda functions are a way to 
abstract a function reference

• multiple possible parameters and 
single expression as function body

lambda parameters: 
expression

Dictionary:

players = {"bob": 20, "alice": 8, 
"alex": 9}

dict(sorted(players.items(), key 
= lambda item: item[0]))

bob 20

alice 8

alex 9

alex 9

alice 8

bob 20



Example: Sorting Dictionary by values using lambdas

• lambda functions are a way to 
abstract a function reference

• multiple possible parameters and 
single expression as function body

lambda parameters: 
expression

Dictionary:

players = {"bob": 20, "alice": 8, 
"alex": 9}

dict(sorted(players.items(), key 
= lambda item: item[1]))

bob 20

alice 8

alex 9

alice 8

alex 9

bob 20


