
[220 / 319] Web 1
Meena Syamkumar

Andy Kuemmel

Learning Objectives Today

Network basics
• IP addresses
• host/domain names
• client/server and request/response

HTTP basics
• URLs
• GET/POST/etc
• headers
• status codes

Requests modules
• downloading data with requests.get
• remote calls with requests.post

Learning Objectives Today

Motivation

Networking Basics

HTTP (Hypertext Transfer Protocol)

Requests Module

Data Science and the Internet

There are tons of online sources of data
• Examples: https://www.msyamkumar.com/cs220/f21/datasets.html

Wide range of topics
• healthcare
• roads and city planning
• astronomy
• population
• business
• entertainment
• education
• etc

Why not just download data by hand?

https://www.msyamkumar.com/cs220/f21/datasets.html

Motivation 1: too much data

What if you’re analyzing language trends over time?
• Dataset: Project Gutenberg has 57K free books
• Too much work to download one by one

Motivation 2: data doesn’t always come in files

Many datasets are difficult to download complete

Instead, you can make function calls to servers
(we’ll learn how) to grab specific data
• Dataset: OpenStreetMap
• You issue calls to get specific data:

1. specify latitude/longitude rectangle
2. specify structures of interest (e.g., bike paths)

Learning Objectives Today

Motivation

Networking Basics

HTTP (Hypertext Transfer Protocol)

Requests Module

Networking Basics

computer 1

computer 2

Computers communicate over a network (e.g., the Internet)
by sending messages to each other

request for data

100100101
011001010

sometimes requests
upload data too

Networking Basics

computer 1

computer 2

Computers communicate over a network (e.g., the Internet)
by sending messages to each other

response with data

client

server

100100101
011001010

Networking Basics

computer 1

computer 2

Challenge: there are millions of computers.
How do we indicate which machine should get our request?

How do we send a letter?

1

2

3

lookup friend's address in phone book

put address on the envelope

trust postal service to get letter to that address

Internet Protocol

computer 1

computer 2

Solution: every machine* has an IP address (Internet Protocol).
Requests are sent to a specific IP address.

*some machines have more multiple addresses

address: 18.216.110.65

request for data to
18.216.110.65

Internet Protocol

computer 1

computer 2

address: 18.216.110.65

request for data to
18.216.110.65

Challenge: it’s hard to remember IP addresses.
Imagine you had to type a number instead of www.google.com!

Domain Names

computer 1

computer 2

address: 18.216.110.65

request for data to
18.216.110.65

Solution: use "nicknames" (called domain names)
for IP addresses of machines that serve data

domain: www.msyamkumar.com

if a domain name is used here,
the IP address is looked up here first

Port Numbers

computer 1

computer 2

address: 18.216.110.65

Challenge: there may be multiple programs running on each computer.
How do we get the messages to the right program?

Python

program A

program B

Python program X

Python program Y

program Z

request for data to
18.216.110.65

Port Numbers

computer 1

computer 2

address: 18.216.110.65

Solution: give each program a unique ID (called a "port number")

Python

program A

program B

Python program X

Python program Y

program Z

request for data to
18.216.110.65

port 80

port 5000

port 8080

(like apartment numbers)

Port Numbers

computer 1

computer 2

address: 18.216.110.65

Solution: specify port number in request

Python

program A

program B

Python program X

Python program Y

program Z

request for data to18.216.110.65:80

port 80

port 5000

port 8080

defaults are often used
(e.g., browsers default to

80 or 443)

computer 1

computer 2

depends on application! (video chat, web browsing, etc)

we’ll only consider web applications for this semester

request for data

what do requests contain?

response with data

what do responses contain?

Learning Objectives Today

Motivation

Networking Basics

HTTP (Hypertext Transfer Protocol)

Requests Module

HTTP

Protocol for communicating web data
• downloading a specific webpage, image, etc

computer 1

computer 2

please send home page
Pythonprogram B Python program Y

port 80

address: 12.34.56.78
domain: example.com

Note: we won’t talk about HTTPS today, which is HTTP with encryption

http://example.com

HTTP

Protocol for communicating web data
• downloading a specific webpage, image, etc

computer 1

computer 2

please send /index.html
Pythonprogram B Python program Y

port 80

address: 12.34.56.78
domain: example.com

http://example.com

HTTP

Protocol for communicating web data
• downloading a specific webpage, image, etc

computer 1

computer 2

please send /about.html
Pythonprogram B Python program Y

port 80

address: 12.34.56.78
domain: example.com

http://example.com

HTTP

Protocol for communicating web data
• downloading a specific webpage, image, etc

computer 1

computer 2

please send /logo.gif
Pythonprogram B Python program Y

port 80

address: 12.34.56.78
domain: example.com

http://example.com

HTTP

Protocol for communicating web data
• downloading a specific webpage, image, etc

computer 1

computer 2

please send /logo.gif
Pythonprogram B Python program Y

port 80

address: 12.34.56.78
domain: example.com

We need three things:
1. domain name
2. port number
3. resource (file name)

http://example.com

URL

which computer?

which program
on that computer?

which resource
from that program?

getting specific
about what we want

We need three things:
1. domain name
2. port number
3. resource (file name)

URLs

URL

https://en.wikipedia.org:443/wiki/URL
domain name

port

resource

We need three things:
1. domain name
2. port number
3. resource (file name)

URLs

URL

https://en.wikipedia.org/wiki/URL
domain name

port would have defaulted to 443 if not specified

resource

We need three things:
1. domain name
2. port number
3. resource (file name)

HTTP

Protocol for communicating web data
• downloading a specific webpage, image, etc

computer 1

computer 2

please send /about.html
Pythonprogram B Python program Y

port 80

address: 12.34.56.78
domain: example.com

URL

how do we specify this?

We need three things:
1. domain name
2. port number
3. resource (file name)

http://example.com

HTTP

Protocol for communicating web data
• downloading a specific webpage, image, etc

computer 1

computer 2

please send /about.html
Pythonprogram B Python program Y

port 80

address: 12.34.56.78
domain: example.com

GET /about.html HTTP/1.1
Host: example.com
User-Agent: ...
Accept: */*

HTTP Request:

http://example.com

HTTP

Protocol for communicating web data
• downloading a specific webpage, image, etc

computer 1

computer 2

response
Pythonprogram B Python program Y

port 80

address: 12.34.56.78
domain: example.com

HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 74
Server: Werkzeug/0.14.1 Python/3.6.6
Date: Sun, 11 Nov 2018 17:00:29 GMT

all the contents

HTTP Response:

http://example.com

Request and Response Headers

HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 74
Server: Werkzeug/0.14.1 Python/3.6.6
Date: Sun, 11 Nov 2018 17:00:29 GMT

all the contents

HTTP Response:

GET /about.html HTTP/1.1
Host: example.com
User-Agent: ...
Accept: */*

HTTP Request:

There are LOTS of details here we don’t care about right now

we want the about.html page

data in about.html

Request and Response Headers

HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 74
Server: Werkzeug/0.14.1 Python/3.6.6
Date: Sun, 11 Nov 2018 17:00:29 GMT

all the contents

HTTP Response:

GET /about.html HTTP/1.1
Host: example.com
User-Agent: ...
Accept: */*

HTTP Request:

There are LOTS of details here we don’t care about right now

we want the about.html page

data in about.html

status code. 200 is good. 404, 500, others are
various errors or other more complicated states

HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 74
Server: Werkzeug/0.14.1 Python/3.6.6
Date: Sun, 11 Nov 2018 17:00:29 GMT

all the contents

HTTP Response:

GET /about.html HTTP/1.1
Host: example.com
User-Agent: ...
Accept: */*

HTTP Request:

There are LOTS of details here we don’t care about right now

we want the about.html page

data in about.html

status code. 200 is good. 404, 500, others are
various errors or other more complicated states

method. GET is simple download.
POST means we are uploading

data as part of our request. We
won’t talk about others today.

Learning Objectives Today

Motivation

Networking Basics

HTTP (Hypertext Transfer Protocol)

Requests Module

Requests module

Purpose
• easily send requests to a server and parse the response
• "HTTP for Humans™"

Installation
• install:

pip install requests

Using it
• just import:

import requests

GET Request

import requests

url = "https://www.msyamkumar.com/hello.txt"

requests.get(url)

sends a GET request to www.msyamkumar.com,
asking for the contents of the /hello.txt page

http://www.msyamkumar.com/

GET Request

import requests

url = "https://www.msyamkumar.com/hello.txt"

resp = requests.get(url)

put response from www.msyamkumar.com in the resp variable

http://www.msyamkumar.com/

GET Request

import requests

url = "https://www.msyamkumar.com/hello.txt"

resp = requests.get(url)

make sure we got 200 (success) back
assert(resp.status_code == 200)

GET Request

import requests

url = "https://www.msyamkumar.com/hello.txt"

resp = requests.get(url)

resp.raise_for_status() # shortcut

GET Request

import requests

url = "https://www.msyamkumar.com/hello.txt"

resp = requests.get(url)

resp.raise_for_status() # shortcut
print(resp.text) # "Hello! Welcome to my website."

JSON Responses

import requests, json

url = "https://www.msyamkumar.com/scores.json"
resp = requests.get(url)

scores = json.loads(resp.text)

JSON Responses

import requests, json

url = "https://www.msyamkumar.com/scores.json"
resp = requests.get(url)

scores = json.loads(resp.text)
scores = resp.json() # shortcut

Example 1: reddit bot
Goal: fetch titles from a subreddit

Let's not all hit reddit at once (feel free to use these snapshots):

https://www.msyamkumar.com/cs220/f21/materials/lectureDemo_code/lec-31/other_files/python.json

https://www.msyamkumar.com/cs220/f21/materials/lectureDemo_code/lec-31/examples/UWMadison.json

https://www.msyamkumar.com/cs220/f21/materials/lectureDemo_code/lec-31/other_files/python.json
https://www.msyamkumar.com/cs220/f21/materials/lectureDemo_code/lec-31/examples/UWMadison.json

Example 2: State Populations

Goal: fetch population data for all states and provide summary stats

Input:
• List of state files:

https://www.msyamkumar.com/cs220/f21/materials/lectureDemo_code/lec
-31/examples/data/state_files.txt
• The 50 JSON files

Output:
• Stats about population: mean, max, min, etc

Bonus! "cache" results to make reruns of notebook faster

https://www.msyamkumar.com/cs220/f21/materials/lectureDemo_code/lec-31/examples/data/state_files.txt

Challenge: Madison bus alerts
Goal: get text of all outstanding alerts

Let's not all hit Madison at once (feel free to use this snapshot):

https://www.msyamkumar.com/cs220/f21/materials/lectureDemo_code/lec-31/other_files/TrapezeRealTimeFeed.json

https://www.msyamkumar.com/cs220/f21/materials/lectureDemo_code/lec-31/other_files/TrapezeRealTimeFeed.json

