
[220 / 319] Database 1
Meena Syamkumar

Andy Kuemmel

Learning objectives – database topic

Today’s lecture
• ”narrowing down” specific data from a big table – pandas
• SQL Data
• schemas: tables, columns, types
• advantages over JSON/CSV
• SQL Queries
• select, where, limit, sort by
• sqlite3 module
• Pandas/DB integration

Next lecture
• Summarizing data

Next to next lecture
• worksheets - SQL practice

What we don’t cover …

• Schema design:
• What tables does a database have?
• What columns does a table have?
• What are the relationship between the columns?
• Changes to database data:
• Add a row, remove a row
• Concurrency
• Performance
• Joins:
• Combining multiple tables with related information

220 Progress

Languages learned
• Python [Programming Language]
• HTML [Markup Language]
• SQL [Query Language]

Data storage
• CSV files
• JSON files
• SQL databases

structured query language

Learning Objectives Today

SQL Data
• schemas: tables, columns, types
• advantages over JSON/CSV

SQL Queries
• select, where, limit, sort by
• sqlite3 module
• Pandas/DB integration

Outline

Tabular Data: CSVs vs. Databases

Common SQL Databases

Example: Madison bus-route data

SQL: Structured Query Language

Demos

Characteristics
• one table
• columns sometimes named

CSV SQL Database

State Capital Population Area
WI Madison 5795000 65498

… … … …

State Capital
WI Madison

… …

State Population
WI 5795000

… …

Characteristics
• collection of tables, each named
• columns always named

capitals populations

State Area
WI 65498

… …

County Pop un_emp
Dane 536416 0.02

… … …

counties areas

Characteristics
• one table
• columns sometimes named
• everything is a string

CSV SQL Database

State Capital Population Area
string string string string

string string string string

string string string string

string string string string

string string string string

string string string string

string string string string

State Capital
text text

text text

text text

text text

State Population
text integer

text integer

text integer

text integer

Characteristics
• collection of tables, each named
• columns always named
• types per column (enforced)

capitals populations

no text allowed

County Pop un_emp
Dane 536416 0.02

… … …

counties areas

State Area
WI 65498

… …

Why use a database?

1. More Structure

Database

A B C
text integer real

text integer real

text integer real

text integer real

same fields and same
types in every column

CSV

A,B,C
string,string,string
string,string,string
string,string,string
string,string,string

JSON

[{"A":"val", "B":10, "C":3.14},
{"A":"val"},
{"A":"v2", "B": 9, "C":False},

everything is a string types, but…

missing values

types may differ across columns

Why use a database?

1. More Structure

2. Sharing

Database

regular file

program 1 program 2

yikes!

this is OK

write
s

writes
writes

writes

yikes!

Why use a database?

1. More Structure

2. Sharing

3. Queries

Databaseregular file

Python code to find
actor who appeared

in most movies

which actor appeared
in the most movies?

Christopher Lee

Why use a database?

1. More Structure

2. Sharing

3. Queries

Databaseregular file

Python code to find
actor who appeared

in most movies
Christopher Lee

question formulated in SQL
(structured query language)

Why use a database?

1. More Structure

2. Sharing

3. Queries

4. Performance

Let's play a game where we pretend to be a database!

Question 1:

How many people are 23 or younger?

Question 2:

How many people scored 23 or less?

names age score
Parker 26 ?

Heidy 22 ?

Shirly 27 ?

Arla 21 ?

Bella 22 ?

Bill 28 ?

Hollis 26 ?

Maurita 22 ?

Milda 22 ?

Pearline 29 ?

Teresa 25 ?

Ceola 30 ?

Milford 25 ?

Alisha 30 ?

Antonetta 28 ?

Ryan 25 ?

Karma 23 ?

Lashandra 24 ?

Breana 22 ?

Sara 28 ?

Question 1:

How many people are 23 or younger?

Question 2:

How many people scored 23 or less?

names age score
Parker ? 21

Heidy ? 22

Shirly ? 22

Arla ? 22

Bella ? 22

Bill ? 22

Hollis ? 23

Maurita ? 24

Milda ? 25

Pearline ? 25

Teresa ? 25

Ceola ? 26

Milford ? 26

Alisha ? 27

Antonetta ? 28

Ryan ? 28

Karma ? 28

Lashandra ? 29

Breana ? 30

Sara ? 30

Question 1:

How many people are 23 or younger?

Question 2:

How many people scored 23 or less?

names age score
Parker 26 21

Heidy 22 22

Shirly 27 22

Arla 21 22

Bella 22 22

Bill 28 22

Hollis 26 23

Maurita 22 24

Milda 22 25

Pearline 29 25

Teresa 25 25

Ceola 30 26

Milford 25 26

Alisha 30 27

Antonetta 28 28

Ryan 25 28

Karma 23 28

Lashandra 24 29

Breana 22 30

Sara 28 30

Which question took longer to answer? Why?

names age score
Parker 26 21

Heidy 22 22

Shirly 27 22

Arla 21 22

Bella 22 22

Bill 28 22

Hollis 26 23

Maurita 22 24

Milda 22 25

Pearline 29 25

Teresa 25 25

Ceola 30 26

Milford 25 26

Alisha 30 27

Antonetta 28 28

Ryan 25 28

Karma 23 28

Lashandra 24 29

Breana 22 30

Sara 28 30

names age score
Arla 21 22

Heidy 22 22

Bella 22 22

Maurita 22 24

Milda 22 25

Breana 22 30

Karma 23 28

Lashandra 24 29

Teresa 25 25

Milford 25 26

Ryan 25 28

Parker 26 21

Hollis 26 23

Shirly 27 22

Sara 28 30

Bill 28 22

Antonetta 28 28

Pearline 29 25

Alisha 30 27

Ceola 30 26

DBs can keep multiple copies of
the same data
• which organizations to use are

configured (indexing)
• which copy to use is used is

automatically determined
based on the question being
asked

copy 1 copy 2

Why use a database?

1. More Structure

2. Sharing

3. Queries

4. Performance

Why not use a database?

It’s often overkill.

For many situations, a simple JSON or CSV is easier to use.

Outline

Tabular Data: CSVs vs. Databases

Common SQL Databases

Example: Madison bus-route data

SQL: Structured Query Language

Demos

Popular SQL Databases

There are minor differences in how you use these (e.g.,
what column types are available and how you query for
data).

Most experience with one DB will translate to work
with other DBs.

Popular SQL Databases

Why learn SQLite?
• easy to install/use
• sqlite3 module comes with Python
• it’s public domain
• several billion deployments

in CS 220

https://www.sqlite.org/mostdeployed.html
- Every Android device
- Every iPhone and iOS device
- Every Mac
- Every Windows 10 machine
- Every Firefox, Chrome, and Safari web browser
- Every instance of Skype
- Every instance of iTunes
- Every Dropbox client

https://www.sqlite.org/mostdeployed.html

Download bus.db and template notebook from
today’s lecture entry to follow along lecture
demos

Outline

Tabular Data: CSVs vs. Databases

Common SQL Databases

Example: Madison bus-route data

SQL: Structured Query Language

Demos

Madison Bus Data: http://data-cityofmadison.opendata.arcgis.com/datasets/metro-
transit-ridership-by-route-weekday

"Metro Transit ridership by route weekday. March, 2015.

Caution should be used with this data. Daily bus stop

boardings were estimated using a 12-day sample of weekday

farebox records and AVL logs, and the GTFS file, from March

2015 from Metro Transit."

SQLite Database

File: bus.db

routes
Table

SQLite Database
boarding

Table

File: bus.db

routes
Table

SQLite Database
boarding

Table

File: bus.db

routes
Table

how do we use this data?

Modules we’ve learned this semester

• math
• collections
• json
• csv
• sys
• os
• copy
• recordclass
• requests
• bs4 (BeautifulSoup)
• pandas
• sqlite3 directly access SQLite databases (comes with Python)

integrates with SQLite

SQLite Database
boarding

Table

File: bus.db

routes
Table

python

your code

python's sqlite3 module

pandas

sqlite3 tool

this semester, we'll only
query data through pandas

sqlite3

import sqlite3

conn = sqlite3.connect("file.db")

database filename
• represented as a string
• will create if doesn’t already exist

(no "w" necessary)

connect for databases is
analogous to open for files

sqlite3

a connection object for
databases is analogous to file
object for files

import sqlite3

conn = sqlite3.connect("file.db")

conn.close()

close it at the end

sqlite3

import sqlite3
import pandas as pd
conn = sqlite3.connect("file.db")

df = pd.read_sql("select ???? from ????", conn)

conn.close()

ask this question query

Demo Time

demo: poke around DB
(will explain more soon)

CREATE TABLE IF NOT EXISTS "boarding" (
"index" INTEGER,
"StopID" INTEGER,
"Route" INTEGER,
"Lat" REAL,
"Lon" REAL,
"DailyBoardings" REAL

);
CREATE INDEX "ix_boarding_index"ON "boarding" ("index");
CREATE TABLE IF NOT EXISTS "routes" (
"index" INTEGER,
"OBJECTID" INTEGER,
"trips_routes_route_id" INTEGER,
"route_short_name" INTEGER,
"route_url" TEXT,
"ShapeSTLength" REAL

);
CREATE INDEX "ix_routes_index"ON "routes" ("index");

table names

CREATE TABLE IF NOT EXISTS "boarding" (
"index" INTEGER,
"StopID" INTEGER,
"Route" INTEGER,
"Lat" REAL,
"Lon" REAL,
"DailyBoardings" REAL

);
CREATE INDEX "ix_boarding_index"ON "boarding" ("index");
CREATE TABLE IF NOT EXISTS "routes" (
"index" INTEGER,
"OBJECTID" INTEGER,
"trips_routes_route_id" INTEGER,
"route_short_name" INTEGER,
"route_url" TEXT,
"ShapeSTLength" REAL

);
CREATE INDEX "ix_routes_index"ON "routes" ("index");

look for column names in parens

columns
• index
• StopID
• Route
• Lat
• Lon
• Daily Boardings

CREATE TABLE IF NOT EXISTS "boarding" (
"index" INTEGER,
"StopID" INTEGER,
"Route" INTEGER,
"Lat" REAL,
"Lon" REAL,
"DailyBoardings" REAL

);
CREATE INDEX "ix_boarding_index"ON "boarding" ("index");
CREATE TABLE IF NOT EXISTS "routes" (
"index" INTEGER,
"OBJECTID" INTEGER,
"trips_routes_route_id" INTEGER,
"route_short_name" INTEGER,
"route_url" TEXT,
"ShapeSTLength" REAL

);
CREATE INDEX "ix_routes_index"ON "routes" ("index");

types...

Overview: Narrowing Down

table 1 table 2 table 3

Overview: Narrowing Down

A B

C D

table 1 table 2 table 3

FROM: which table?
SELECT: which columns?
WHERE: which rows?
LIMIT: how many rows?

A B

C D

col1 col2 col3

col1 col3

a query result
looks like a table

SQL Queries: How to ask a DB questions

SELECT

Syntax for SELECT (case and spacing don’t matter):

FROM ;

SQL Queries: How to ask a DB questions

select

Syntax for SELECT (case and spacing don’t matter):

from

optional stuff ;

SQL Queries: How to ask a DB questions

select

Syntax for SELECT (case and spacing don’t matter):

from table name ;

SQL Queries: How to ask a DB questions

select

Syntax for SELECT (case and spacing don’t matter):

from boarding;

SQL Queries: How to ask a DB questions

select

Syntax for SELECT (case and spacing don’t matter):

from boarding;

which columns

SQL Queries: How to ask a DB questions

select *

Syntax for SELECT (case and spacing don’t matter):

from boarding;

star means all of them

Result:

…

SQL Queries: How to ask a DB questions

select Route, DailyBoardings

Syntax for SELECT (case and spacing don’t matter):

from boarding;

Result:

…

SQL Queries: How to ask a DB questions

select *

Syntax for SELECT (case and spacing don’t matter):

from routes;

Result:

…

SQL Queries: How to ask a DB questions

select route_url

Syntax for SELECT (case and spacing don’t matter):

from routes;

Result:

…

SQL Queries: How to ask a DB questions

select

Syntax for SELECT (case and spacing don’t matter):

from

optional stuff ;

where order by limit

SQL Queries: How to ask a DB questions
Syntax for SELECT (case and spacing don’t matter):

Result:

…

select *
from boarding;

SQL Queries: How to ask a DB questions

select *
from boarding
where Route = 80;

Syntax for SELECT (case and spacing don’t matter):

Result:

…

Note: SQL only has one
equal sign for equality!

But == does work

SQL Queries: How to ask a DB questions

select *
from boarding
where Route = 80
order by StopID;

Syntax for SELECT (case and spacing don’t matter):

Result:

…

SQL Queries: How to ask a DB questions

select *
from boarding
where Route = 80
order by StopID DESC;

Syntax for SELECT (case and spacing don’t matter):

Result:

…

descending means
biggest first

SQL Queries: How to ask a DB questions

select *
from boarding
where Route = 80
order by StopID ASC;

Syntax for SELECT (case and spacing don’t matter):

Result:

…

ascending means
smallest first

SQL Queries: How to ask a DB questions

select *
from boarding
where Route = 80
order by StopID ASC
limit 3;

Syntax for SELECT (case and spacing don’t matter):

Result:

only show the top N results

3 results

SQL Queries: How to ask a DB questions

select *
from boarding
where Route = 80
order by StopID ASC
limit 3;

Syntax for SELECT (case and spacing don’t matter):

Result:

SQL Queries: How to ask a DB questions

select *
from boarding
where Route = 80
order by StopID ASC
limit 3;

Syntax for SELECT (case and spacing don’t matter):

Result:

You can use any combination of where, order by, and limit.
But whichever you use, they must appear in that order!

Outline

Tabular Data: CSVs vs. Databases

Common SQL Databases

Example: Madison bus-route data

SQL: Structured Query Language

Demos

Example 1: How Many People Ride the Bus

Goal: add up all boardings across all bus stops/routes

Input:
• bus.db
• use DailyBoardings column in boarding table

Output:
• total riders

Example 2: West-most Bus Route

Goal: which Madison bus goes farthest west?

Input:
• bus.db

Output:
• route number of bus

that goes farthest west

smaller
longitude

bigger
longitude

bigger latitude

smaller latitude

N

S

W E

Challenge 1: Heart of Madison

Goal: what is the central-most location of all bus pickups?

Input:
• bus.db

Output:
• a latitude and longitude

Challenge 2 - Demo 4: Fifa

Goal: load Fifa.csv to a SQLite DB, then query it

Queries:
• who are the youngest players?
• who are the oldest players?
• who are the five oldest players?
• how many players are from Brazil?
• who are the oldest players from Brazil?
• who are the 5 oldest players from Brazil?
• what percent of leagues have players from Brazil? DISTINCT

Challenge 3: Vocabulary Quiz

Goal: quiz user on words looked up while reading a Kindle

Input (vocab.db):
• table of kindle words lookups
• table of definitions

Output:
• random word
• real definition
• fake definitions

