[220 / 319] Randomness

Meena Syamkumar
Andy Kuemmel

Announcements

- Follow-up courses
- Direct follow up course: CS 320
- Computer Sciences: CS 200, 300, 400, 537, 564, 640
- Office Hours
- Last day of TA / PM office hours: Wednesday Dec 15th.
- Additional instructor office hours

Final exam

- Recommended prep
- review past exam question papers
- make sure you understand all the worksheet problems
- review the readings, slides, lecture demo code
- review everything you got wrong on the midterms
- prepare a note sheet
- Live review session on Wednesday Dec $15^{\text {th }}$
- All are welcome to attend

Course evaluations

- We value student feedback greatly
- Please bring a smile to your instructors' face by spending a few minutes to fill out evals $;$
- Login to https://aefis.wisc.edu/
- Find the CS220 / CS3I9 lecture and please provide feedback

Recommended reading

Fluent Python: Clear, Concise, and Effective Programming
by Luciano Ramalho

Think Python: How to Think Like a Computer Scientist
by Allen B. Downey

Recommended reading

Data analysis:

- Data Action: Using Data for Public Good by Sarah Williams SQL:
- Learning SQL: Generate, Manipulate, and Retrieve Data by Alan Beaulieu
- SQL Cookbook by Anthony Molinaro

Visualization:

- The Visual Display of Quantitative Information by Edward R. Tufte Statistics:
- Thinking, Fast and Slow by Daniel Kahneman
- The Signal and the Noise by Nate Silver
- Statistics Done Wrong by Alex Reinhart

Why Randomize?

Games

Security

Simulation

our focus

Outline

choice()

bugs and seeding
significance
histograms
normal()

New Functions Today

numpy. random:

- powerful collection of functions
- choice

Series.plot.hist:

- similar to bar plot
- visualize spread of random results

choice
from numpy.random import choice
result = choice([<choice1, choice2, ...])
list of things to randomly choose from

choice

from numpy.random import choice

```
result = choice(["rock", "paper", "scissors"])
```


list of things to randomly choose from

choice

from numpy.random import choice
result = choice(["rock", "paper", "scissors"]) print(result)

Output:

scissors

choice

from numpy.random import choice
result = choice(["rock", "paper", "scissors"]) print(result)

```
result = choice(["rock", "paper", "scissors"])
print(result)
```


Output:

each time choice is
called, a value is randomly
selected (will vary run to run)
choice
from numpy.random import choice
choice(["rock", "paper", "scissors"], size=5)
for simulation, we'll often want to compute many random results
choice
from numpy.random import choice
choice(["rock", "paper", "scissors"], size=5)
\downarrow
$\operatorname{array}([$ rock', 'scissors', 'paper', 'rock', 'paper'], dtype='<U8')
it's list-like

Random values and Pandas

from numpy.random import choice
\# random Series
Series(choice(["rock", "paper", "scissors"], size=5))

0	rock
1	rock
2	scissors
3	paper
4	scissors
dtype $:$ object	

Random values and Pandas

from numpy.random import choice
\# random Series
DataFrame(choice(["rock", "paper", "scissors"], size=(5,2)))
$\downarrow \rightarrow$

	0	1
$\mathbf{0}$	paper	rock
$\mathbf{1}$	scissors	rock
$\mathbf{2}$	rock	rock
$\mathbf{3}$	scissors	paper
$\mathbf{4}$	rock	scissors

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question I: how can we make sure the randomization isn't biased?

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question I: how can we make sure the randomization isn't biased?

Question 2: how can we make it biased (if we want it to be)?

Random Strings vs. Random Ints

from numpy.random import choice, normal
\# random string: rock, paper, or scissors choice(["rock", "paper", "scissors"])
\# random int: 0, 1 , or 2
choice([0, 1, 2])

\# random int (approach 2): 0, 1, or 2 choice (3)

random non-negative int that is less than 3

Outline

choice()
bugs and seeding
significance
histograms
normal()

Example: change over time

```
s = Series(choice(10, size=5))
\begin{tabular}{|ll|}
\hline 0 & 6 \\
1 & 7 \\
2 & 7 \\
3 & 3 \\
4 & 1 \\
dtype: & int64 \\
\hline
\end{tabular}
s.plot.line()
```


percents $=$ []
for i in range(1, len(s)):
diff $=100 *(s[i] /$ s[i-1] - 1)
percents.append(diff)
Series (percents) . plot.line()
can you identify the bug in the code?

Example: change over time

```
s = Series(choice(10, size=5))
\begin{tabular}{|ll|}
\hline 0 & 9 \\
1 & 1 \\
2 & 0 \\
3 & 8 \\
4 & 8 \\
dtype: & int64 \\
\hline
\end{tabular}
s.plot.line()
```



```
percents = []
for i in range(1, len(s)):
    diff = 100 * (s[i] / s[i-1] - 1)
    percents.append(diff)
Series(percents).plot.line()
```

/Library/Frameworks/Python.framework/Versions/3.7/lib/ python3.7/site-packages/ipykernel_launcher.py:3: Runti meWarning: divide by zero encountered in long_scalars This is separate from the ipykernel package so we ca n avoid doing imports until
can you identify the bug in the code?

Not all bugs are equal!

Pseudorandom Generators

"Random" generators are really just pseudorandom

Pseudorandom Generators

"Random" generators are really just pseudorandom

Pseudorandom Generators

Seeding

What if I told you that you can choose your track?

```
In [2]: l l np.random.seed(220)
Out[2]: array([883, 732, 15])
In [3]: 1 np.random.seed(220)
    2 choice(1000, size = 3)
Out[3]: array([883, 732, 15])
In [4]: 1 np.random.seed(220)
    choice(1000, size = 3)
Out[4]: array([883, 732, 15])
```


Seeding

Common approach for simulations:
I. seed using current time
2. print seed
3. use the seed for reproducing bugs, as necessary

In [28]: 1 import time
now $=$ int(time.time())
print("seeding with", now)
np.random.seed(now)
choice(1000, size=3)
seeding with 1556673136
Out[28]: array([352, 734, 362])

Outline

choice()
bugs and seeding
significance
histograms
normal()

In a noisy world, what is noteworthy?

Is this coin biased?

Is this coin biased?

51
49

55
45

55 million 45 million

Call shenanigans? No.

Call shenanigans? Yes.
Note: there is a non-zero probability that a fair coin will do this, but the odds are slim large skew is good evidence of shenanigans

Call shenanigans? No.

Call shenanigans? Yes.

Demo: CoinSim

60

40

Call shenanigans?

Strategy: simulate a fair coin
I. "flip" it I00 times using numpy.random.choice
2. count heads
3. repeat above IOK times
$[50,61,51,44,39,43,51,49,49,38, \ldots]$
II more
12 less

Outline

choice()
bugs and seeding
significance
histograms
normal()

Frequencies across categories

bars are a good way to view frequencies across categories

```
s = Series(["rock", "rock", "paper",
    "scissors", "scissors", "scissors"])
s.value_counts().plot.bar(color="orange")
```


Frequencies across numbers

bars are a bad way to view frequencies across numbers
s = Series([0, 0, 1, 8, 9, 9])
s.value_counts().plot.bar(color="orange")

Frequencies across numbers

bars are a bad way to view frequencies across numbers
s = Series ([0, 0, 1, 8, 9, 9])
s.value_counts().sort_index().plot.bar(color="orange")

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series ([0, 0, 1, 8, 9, 9])
s.value_counts().soxt_index().plot.bar()
s.plot.hist()

this kind of plot is called a histogram

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, 0, 1, 8, 9, 9.2])
s.value_counts().soxt_index().plot.bar()
s.plot.hist()

a histogram "bins" nearby numbers to create discrete bars

Frequencies across numbers

histograms are a good way to view frequencies across numbers

```
s = Series([0.1, 0, 1, 8, 9, 9.2])
```

s.value_counts().soxt_index().plot.bar() s.plot.hist(bins=10)

we can control the number of bins

Frequencies across numbers

histograms are a good way to view frequencies across numbers

```
s = Series([0.1, 0, 1, 8, 9, 9.2])
```

s.value_counts().soxt_index().plot.bar() s.plot.hist(bins=3)

too few bins provides too little detail

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, 0, 1, 8, 9, 9.2])
s.value_counts().soxt_index().plot.bar()
s.plot.hist(bins=100)

Frequencies across numbers

histograms are a good way to view frequencies across numbers

```
s = Series([0.1, 0, 1, 8, 9, 9.2])
```

s.value_counts().soxt_index().plot.bar() s.plot.hist(bins=10)

pandas chooses the default bin boundaries

Frequencies across numbers

histograms are a good way to view frequencies across numbers
s = Series([0.1, 0, 1, 8, 9, 9.2])
s.value_counts().soxt_index().plot.bar($)$
s.plot.hist(bins $=[0,1,2,3,4,5,6,7,8,9,10])$

we can override the defaults

Frequencies across numbers

histograms are a good way to view frequencies across numbers

```
s = Series([0.1, 0, 1, 8, 9, 9.2])
```

s.value_counts().soxt_index().plot.bar() s.plot.hist(bins=range(11))

this is easily done with range

Demo: Visualize CoinSim Results

numpy can directly generate random numbers fitting a normal distribution
this shape resembles what we often call a normal distribution or a "bell curve"
in general, if we take large samples enough times, the sample averages will look like this (we won't discuss exceptions here)

Outline

choice()
bugs and seeding
significance
histograms
normal()

normal

```
from numpy.random import choice, normal
import numpy as np
for i in range(10):
    print(normal())
```


Output:

$$
-0.18638553993371157
$$

$$
0.02888452916769247
$$

$$
1.2474561113726423
$$

$$
\text { numbers closer to } 0 \text { more likely }-0.5388224399358179
$$

$$
-x \text { just as likely as } x \left\lvert\, \begin{aligned}
& -0.45143322136388525 \\
& -1.4001861112018241 \\
& 0.28119371511868047
\end{aligned}\right.
$$

0.2608861898556597
-0. 19246288728955144
0.2979572961710292

normal

```
from numpy.random import choice, normal
import numpy as np
s = Series(normal(size=10000))
s.plot.hist()
```


normal

from numpy.random import choice, normal import numpy as np
$s=$ Series(normal(size=10000))
s.plot.hist(bins=100)

