
[220] Error Handling

Meena Syamkumar
Mike Doescher

Learning Objectives Today

How to crash more
•turn semantic bugs into runtime bugs with assert

How to crash less
•catch exceptions with try/except

https://en.wikipedia.org/wiki/Pizza

https://en.wikipedia.org/wiki/Pizza

Example: Pizza Analyzer

import math

def pizza_size(radius):
return (radius ** 2) * math.pi

def slice_size(radius, slice_count):
total_size = pizza_size(radius)
return total_size * (1 / slice_count)

def main():
for i in range(10):

grab input
args = input("Enter pizza diameter(inches), slice count): ")
args = args.split(',')
radius = float(args[0].strip()) / 2
slices = int(args[1].strip())

pizza analysis
size = slice_size(radius, slices)
print('PIZZA: radius={}, slices={}, slice square inches={}'

.format(radius, slices, size))

main()

Example: Pizza Analyzer

import math

def pizza_size(radius):
return (radius ** 2) * math.pi

def slice_size(radius, slice_count):
total_size = pizza_size(radius)
return total_size * (1 / slice_count)

def main():
for i in range(10):

grab input
args = input("Enter pizza diameter(inches), slice count): ")
args = args.split(',')
radius = float(args[0].strip()) / 2
slices = int(args[1].strip())

pizza analysis
size = slice_size(radius, slices)
print('PIZZA: radius={}, slices={}, slice square inches={}'

.format(radius, slices, size))

main()

Exercise: what are possible bad
inputs for

•diameter
•slice count
•other?

Does it cause a runtime error or
semantic error?

Assert

Syntax:

assert BOOLEAN_EXPRESSION

Purpose:

Force program to crash if something is non-sensible, rather than run and
produce garbage.

semantic errors
(hard to debug)

runtime errors
(easier to debug)

Assert

Syntax:

assert BOOLEAN_EXPRESSION

Enter pizza diameter(inches), slice count): -10, 8

Traceback (most recent call last):

File "pizza.py", line 24, in <module>

main()

File "pizza.py", line 20, in main

size = slice_size(radius, slices)

File "pizza.py", line 8, in slice_size

total_size = pizza_size(radius)

File "pizza.py", line 4, in pizza_size

assert(radius > 0)

AssertionError

False

Crash!

True

nothing happens

Warning: sometimes people disable
assertions when running your code

to improve performance

Assert

Syntax:

assert BOOLEAN_EXPRESSION

Examples:

assert x > 0

assert items != None

assert “age” in person

assert len(nums) % 2 == 1

Pizza Example: add asserts to crash upon
•diameter <= 0
•slices <= 0

What if we want to keep running even

if there is an error?

Try/Except

Syntax:

flaky_function()

Try/Except

Syntax:

try:

flaky_function()

except:

print(“error!”) # or some other handling

Try/Except

Syntax:

try:

flaky_function()

except:

print(“error!”) # or some other handling

Description:

try and except blocks come in pairs (runtime errors are “exceptions”)

Try/Except

Syntax:

try:

flaky_function()

except:

print(“error!”) # or some other handling

Description:

try and except blocks come in pairs (runtime errors are “exceptions”)

Python tries to run the code in the try block. If there’s an exception,
it just runs the except block (instead of crashing). This is called “catching” the
exception.

If there is no exception, the except block does not run.

Try/Except

Syntax:

try:

flaky_function()

except:

print(“error!”) # or some other handling

Description:

try and except blocks come in pairs (runtime errors are “exceptions”)

Python tries to run the code in the try block. If there’s an exception,
it just runs the except block (instead of crashing). This is called “catching” the
exception.

If there is no exception, the except block does not run.

Pizza Example: try/except to continue running
upon

•parse errors
•analysis errors

Exceptions are Exceptions
to Regular Control Flow

never runs

Exceptions are Exceptions
to Regular Control Flow

Exceptions are Exceptions
to Regular Control Flow

g catches, so f never knows
about the exception

What if we want to know

the reason for the exception?

Crash Cause

Version 1:

try:

flaky_function()

except:

print(“error!”) # or some other handling

Version 2:

try:

flaky_function()

except Exception as e:

print(“error because:”, str(e))

get exception object
describing the problem

Crash Cause

Version 1:

try:

flaky_function()

except:

print(“error!”) # or some other handling

Version 2:

try:

flaky_function()

except Exception as e:

print(“error because:”, str(e))

get exception object
describing the problem

e is of type Exception (very general)
(there are different types of exceptions)

Crash Cause

Version 1:

try:

flaky_function()

except:

print(“error!”) # or some other handling

Version 2:

try:

flaky_function()

except Exception as e:

print(“error because:”, str(e))

get exception object
describing the problem

e is of type Exception (very general)
(there are different types of exceptions)

why it failed

Pizza Example: print failure reasons
• for parse errors
• for analysis errors

What if we only want to catch

certain exceptions?

Narrow Catching

Version 2:

try:

flaky_function()

except Exception as e:

print(“error because:”, str(e))

Version 3:

try:

flaky_function()

except (ValueError, IndexError) as e:

print(“error because:”, str(e))

Narrow Catching

Version 2:

try:

flaky_function()

except Exception as e:

print(“error because:”, str(e))

Version 3:

try:

flaky_function()

except (ValueError, IndexError) as e:

print(“error because:”, str(e))

only catch these two
(not NameError and others)

Narrow Catching

Version 2:

try:

flaky_function()

except Exception as e:

print(“error because:”, str(e))

Version 3:

try:

flaky_function()

except (ValueError, IndexError) as e:

print(“error because:”, str(e))

only catch these two
(not NameError and others)

Pizza Example: catch only real parse errors
• strings when want ints
• not enough values
• NOT typos in variable names

General Rule: always catch specific types of exceptions,
and/or make sure the user knows there was an error

(unexpected silent errors are the worst!)

Exception Hierarchy

Documentation:
https://docs.python.org/3/library/exceptions.html#exception-hierarchy

screenshot
of hierarchy

https://docs.python.org/3/library/exceptions.html#exception-hierarchy

What if we want to produce a specific

kind of error? (not just an assert)

BaseException

+-- Exception

+-- ArithmeticError

| +-- FloatingPointError

| +-- OverflowError

| +-- ZeroDivisionError

+-- AssertionError

+-- AttributeError

+-- TypeError

+-- ValueError

Custom Errors

Asserts vs. Raising Exception Objects

Version 1 (quick and dirty):

def slice_size(radius, slice_count):

assert radius > 0

return pizza_size(radius) / slice_count

Version 2 (more robust and informative):

def slice_size(radius, slice_count):

if radius <= 0:

raise ArithmeticError(“number of slices <= 0”)

return pizza_size(radius) / slice_count

create TypeError object

with this messagetell Python this exception
occurred here

Summary

Asserts
• force a crash/exception
• better to crash in an obvious way than to use corrupt data

Exceptions
• produce them with raise
• catch them with try/except
• can choose specific types of exceptions

General Rule: always catch specific types of exceptions,
and/or make sure the user knows there was an error

(unexpected silent errors are the worst!)

