
CS 220: Recursion
The Art of Self Reference

Meena Syamkumar

Michael Doescher

Part 2 of 3 - Data Structures

▪ Lists and Dictionaries

Part 2 of 3 - Data Structures

▪ Lists and Dictionaries

▪ CSV and JSON

Part 2 of 3 - Data Structures

▪ Lists and Dictionaries

▪ CSV and JSON

▪ Objects and References

Part 2 of 3 - Data Structures

▪ Lists and Dictionaries

▪ CSV and JSON

▪ Objects and References

▪ Fancy Functions

▪ Recursion

▪ Generators

▪ Functions are Objects

Part 2 of 3 - Data Structures

▪ Lists and Dictionaries

▪ CSV and JSON

▪ Objects and References

▪ Fancy Functions

▪ Recursion

▪ Generators

▪ Functions are Objects

Part 2 of 3 - Data Structures

▪ Lists and Dictionaries

▪ CSV and JSON

▪ Objects and References

▪ Fancy Functions

▪ Recursion

▪ Generators

▪ Functions are Objects

▪ Files

▪ Errors

Hofstadter's Law: “It always takes longer than you expect, even when you

take into account Hofstadter's Law.”

(From Gödel, Escher, Bach)

https://en.wikipedia.org/wiki/Circular_definition

Goal: use self-reference is a meaningful way

good advice for CS assignments!

“Dialectical Materialism is materialism that involves dialectic.”

Hofstadter's Law: “It always takes longer than you expect, even when you

take into account Hofstadter's Law.”

(From Gödel, Escher, Bach)

https://en.wikipedia.org/wiki/Circular_definition

Goal: use self-reference is a meaningful way

good advice for CS assignments!

“Dialectical Materialism is materialism that involves dialectic.”

“The Marxist theory (adopted as the official philosophy of the Soviet communists) that political and

historical events result from the conflict of social forces and are interpretable as a series of

contradictions and their solutions. The conflict is believed to be caused by material needs.”

Hofstadter's Law: “It always takes longer than you expect, even when you

take into account Hofstadter's Law.”

(From Gödel, Escher, Bach)

mountain: “a landmass that projects conspicuously above its surroundings

and is higher than a hill”

hill: “a usually rounded natural elevation of land lower than a mountain”

(Example of unhelpful self reference from Merriam-Webster dictionary)

https://en.wikipedia.org/wiki/Circular_definition

Goal: use self-reference is a meaningful way

Overview: Learning Objectives

Recursive definitions and recursive information

• What is a recursive definition/structure?

• Arbitrarily vs. infinitely

Recursive code

• What is recursive code?

• Why write recursive code?

• Where do computers keep local variables for recursive calls?

• What happens to programs with infinite recursion?

Read Think Python
✦ Ch 5: “Recursion” through “Infinite Recursion”

✦ Ch 6: “More Recursion” through end

What is Recursion?

Recursive definitions

• Contain the term in the body

• Dictionaries, mathematical definitions, etc

A number x is a positive even number if:

What is Recursion?

Recursive definitions

• Contain the term in the body

• Dictionaries, mathematical definitions, etc

A number x is a positive even number if:

•x is 2

OR

•x equals another positive even number plus two

What is Recursion?

Recursive definitions

• Contain the term in the body

• Dictionaries, mathematical definitions, etc

Recursive structures may refer to structures of the same type

• data structures or real-world structures

rows
rows = [

[“A”,[1,2]],

[“B”,[3,4,5]],

[“C”,[6,7]]

]
“A” “B” “C”

1 2 3 4 6 75

Recursive structures are EVERYWHERE!

{

“name”: “alice”,

“grade”: “A”,

“score”: 96,

“exams”: {

“midterm”: {“points”:94,

“total”:100},

“final”: {“points”: 98,

“total”: 100}

}

}

nature files formats

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end

splitting into other branches, OR

terminating with a leaf
?

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end

splitting into other branches, OR

terminating with a leaf

? ?
?

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end

splitting into other branches, OR

terminating with a leaf

? ?

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end

splitting into other branches, OR

terminating with a leaf

? ? ?
? ?

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end

splitting into other branches, OR

terminating with a leaf

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end

splitting into other branches, OR

terminating with a leaf

trees are arbitrarily large:

recursive case allows

indefinite growth

arbitrarily != infinitely

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end

splitting into other branches, OR

terminating with a leaf

trees are arbitrarily large:

recursive case allows

indefinite growth

trees are finite:

eventual base case

allows completion

arbitrarily != infinitely

base case (leaf)

recursive case (branch)

Example: Directories (aka folders)

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: Directories (aka folders)

file system tree

Term: directory

Def: a collection of files and directories

recursive because def contains term

Example: (simplified) JSON Format

Example JSON Dictionary:

{

“name”: “alice”,

“grade”: “A”,

“score”: 96

}

Example: (simplified) JSON Format

Example JSON Dictionary:

{

“name”: “alice”,

“grade”: “A”,

“score”: 96

}

Term: json-dict

Def: a set of json-mapping's

Example: (simplified) JSON Format

Example JSON Dictionary:

{

“name”: “alice”,

“grade”: “A”,

“score”: 96

}

Term: json-dict

Def: a set of json-mapping's

Example: (simplified) JSON Format

Example JSON Dictionary:

{

“name”: “alice”,

“grade”: “A”,

“score”: 96

}

Term: json-dict

Def: a set of json-mapping's

Term: json-mapping

Def: a json-string (KEY) paired with a

json-string OR json-number

OR json-dict (VALUE)

keys values

Example: (simplified) JSON Format

Example JSON Dictionary:

{

“name”: “alice”,

“grade”: “A”,

“score”: 96

}

Term: json-dict

Def: a set of json-mapping's

Term: json-mapping

Def: a json-string (KEY) paired with a

json-string OR json-number

OR json-dict (VALUE)

recursive self reference isn’t always direct!

Example: (simplified) JSON Format

Example JSON Dictionary:

{

“name”: “alice”,

“grade”: “A”,

“score”: 96,

“exams”: {

“midterm”: 94,

“final”: 98

}

}

Term: json-dict

Def: a set of json-mapping's

Term: json-mapping

Def: a json-string (KEY) paired with a

json-string OR json-number

OR json-dict (VALUE)

Example: (simplified) JSON Format

Example JSON Dictionary:

{

“name”: “alice”,

“grade”: “A”,

“score”: 96,

“exams”: {

“midterm”: {“points”:94,

“total”:100},

“final”: {“points”: 98,

“total”: 100}

}

}

Term: json-dict

Def: a set of json-mapping's

Term: json-mapping

Def: a json-string (KEY) paired with a

json-string OR json-number

OR json-dict (VALUE)

Example: (simplified) JSON Format

Example JSON Dictionary:

{

“name”: “alice”,

“grade”: “A”,

“score”: 96,

“exams”: {

“midterm”: {“points”:94,

“total”:100},

“final”: {“points”: 98,

“total”: 100}

}

}

Term: json-dict

Def: a set of json-mapping's

Term: json-mapping

Def: a json-string (KEY) paired with a

json-string OR json-number

OR json-dict (VALUE)

Overview: Learning Objectives

Recursive information

• What is a recursive definition/structure?

• Arbitrarily vs. infinitely

Recursive code

• What is recursive code?

• Why write recursive code?

• Where do computers keep local variables for recursive calls?

• What happens to programs with infinite recursion?

Recursive Code

What is it?

• A function that calls itself (possible indirectly)

f g h

call

callcall

Recursive Code

What is it?

• A function that calls itself (possible indirectly)

g h

call

call

def f():
other code
f()
other code

Recursive Code

What is it?

• A function that calls itself (possible indirectly)

def f():
other code
f()
other code

def g():
other code
h()
other code

def h():
other code
g()
other code

Recursive Code

What is it?

• A function that calls itself (possible indirectly)

Motivation: don’t know how big the data is before execution

• Need either iteration or recursion

• In theory, these techniques are equally powerful

Recursive Code

What is it?

• A function that calls itself (possible indirectly)

Motivation: don’t know how big the data is before execution

• Need either iteration or recursion

• In theory, these techniques are equally powerful

Why recurse? (instead of always iterating)

• in practice, often easier

• recursive code corresponds to recursive data

• reduce a big problem into a smaller problem

https://texastreesurgeons.com/services/tree-removal/

https://texastreesurgeons.com/services/tree-removal/

Recursive Student

Counting

Example from https://courses.cs.washington.edu/courses/cse143/17au/

eager CS 220 students

in the front row

wise and benevolent

teacher wearing a top hat

Recursive Student

Counting
Imagine:

A teacher wants to know how many

students are in a column.

What should each student ask

the person behind them?

Constraints:

• It is dark, you can’t see the back

• You can’t get up to count

• You may talk to adjacent students

• Mic is broken (students in back can't

hear from front)

How many students

are in this column?

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student

Counting
Strategy: reframe question as “how

many students are behind you?”

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

Recursive Student

Counting
Strategy: reframe question as “how

many students are behind you?”

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

Reframing is the hardest part

Recursive Student

Counting
Strategy: reframe question as “how

many students are behind you?”

Process:

if nobody is behind you: say 0

else: ask them, say their answer+1

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

Recursive Student

Counting

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

how many are behind you?

Strategy: reframe question as “how

many students are behind you?”

Process:

if nobody is behind you: say 0

else: ask them, say their answer+1

Recursive Student

Counting

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

how many are behind you?

how many are behind you?

how many are behind you?

how many are behind you?

Strategy: reframe question as “how

many students are behind you?”

Process:

if nobody is behind you: say 0

else: ask them, say their answer+1

Recursive Student

Counting

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

how many are behind you?

how many are behind you?

20

how many are behind you?

Strategy: reframe question as “how

many students are behind you?”

Process:

if nobody is behind you: say 0

else: ask them, say their answer+1

Recursive Student

Counting

Example from https://courses.cs.washington.edu/courses/cse143/17au/

how many are behind you?

how many are behind you?

21

20

how many are behind you?

Strategy: reframe question as “how

many students are behind you?”

Process:

if nobody is behind you: say 0

else: ask them, say their answer+1

Recursive Student

Counting

Example from https://courses.cs.washington.edu/courses/cse143/17au/

23

22

21

20

24

Strategy: reframe question as “how

many students are behind you?”

Process:

if nobody is behind you: say 0

else: ask them, say their answer+1

Recursive Student

Counting

Example from https://courses.cs.washington.edu/courses/cse143/17au/

23

22

21

20

24

Strategy: reframe question as “how

many students are behind you?”

Process:

if nobody is behind you: say 0

else: ask them, say their answer+1

Aha! Clearly there must

be 25 students in this

column

Recursive Student

Counting

Example from https://courses.cs.washington.edu/courses/cse143/17au/

23

22

21

20

24

Strategy: reframe question as “how

many students are behind you?”

Process:

if nobody is behind you: say 0

else: ask them, say their

answer+1

Observations:

• Each student runs the same “code”

• Each student has their own “state”

Aha! Clearly there must be

25 students in this column

Practice: Reframing Factorials

N! = 1 x 2 x 3 x … x (N-2) x (N-1) x N

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

Goal: work from examples to get to recursive code

def fact(n):
pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

look for patterns that allow

rewrites with self reference

def fact(n):
pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

look for patterns that allow

rewrites with self reference

def fact(n):
pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! =

2! =

3! =

4! =

5! = 4! * 5

def fact(n):
pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! =

2! =

3! =

4! =

5! = 4! * 5

def fact(n):
pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! =

2! =

3! =

4! = 3! * 4

5! = 4! * 5

def fact(n):
pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! =

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120
def fact(n):

pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

don’t need a pattern

at the start

def fact(n):
pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

convert self-referring examples

to a recursive definition

def fact(n):
pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! is 1

def fact(n):
pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! is 1

N! is ???? for N>1

def fact(n):
pass # TODO

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
pass # TODO

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! is 1

N! is (N-1)! * N for N>1

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
pass # TODO

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! is 1

N! is (N-1)! * N for N>1

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
if n == 1:

return 1

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! is 1

N! is (N-1)! * N for N>1

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! is 1

N! is (N-1)! * N for N>1

Example: Factorials

3. Recursive Definition:1. Examples:

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

4. Python Code:

2. Self Reference:

1! = 1

2! = 1! * 2

3! = 2! * 3

4! = 3! * 4

5! = 4! * 5

1! = 1

2! = 1*2 = 2

3! = 1*2*3 = 6

4! = 1*2*3*4 = 24

5! = 1*2*3*4*5 = 120

1! is 1

N! is (N-1)! * N for N>1

Let’s “run” it!

fact(n=4)Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

Note, this is not a stack frame!

We're tracing code line-by-line.

Boxes represent which invocation.

somebody
called fact(4)

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

fact(n=2)

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

fact(n=2)

if n == 1:

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

fact(n=2)

if n == 1:

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

fact(n=2)

if n == 1:

fact(n=1)

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

fact(n=2)

if n == 1:

fact(n=1)

if n == 1:

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

fact(n=2)

if n == 1:

fact(n=1)

if n == 1:

return 1

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

fact(n=2)

if n == 1:

p = 1

fact(n=1)

if n == 1:

return 1

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

fact(n=2)

if n == 1:

p = 1

return 2

fact(n=1)

if n == 1:

return 1

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

p = 2

fact(n=2)

if n == 1:

p = 1

return 2

fact(n=1)

if n == 1:

return 1

fact(n=4)

if n == 1:Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

p = 2

return 6

fact(n=2)

if n == 1:

p = 1

return 2

fact(n=1)

if n == 1:

return 1

fact(n=4)

if n == 1:

p = 6

Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

p = 2

return 6

fact(n=2)

if n == 1:

p = 1

return 2

fact(n=1)

if n == 1:

return 1

fact(n=4)

if n == 1:

p = 6

return 24

Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

p = 2

return 6

fact(n=2)

if n == 1:

p = 1

return 2

fact(n=1)

if n == 1:

return 1

fact(n=4)

if n == 1:

p = 6

return 24

Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

p = 2

return 6

fact(n=2)

if n == 1:

p = 1

return 2

fact(n=1)

if n == 1:

return 1

fact(n=4)

if n == 1:

p = 6

return 24

Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

fact(n=3)

if n == 1:

p = 2

return 6

fact(n=2)

if n == 1:

p = 1

return 2

fact(n=1)

if n == 1:

return 1

How does Python keep

all the variables separate?

Tracing Factorial

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

frames to the rescue!

fact(n=4)

if n == 1:

p = 6

return 24

fact(n=3)

if n == 1:

p = 2

return 6

fact(n=2)

if n == 1:

p = 1

return 2

fact(n=1)

if n == 1:

return 1

How does Python keep

all the variables separate?

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple

invocations share code.

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple

invocations share code.

Variables for an invocation exist in a frame

frame: variables

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple

invocations share code.

Variables for an invocation exist in a frame

• the frames are stored in the stack

frame: stack: activevariables

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple

invocations share code.

Variables for an invocation exist in a frame

• the frames are stored in the stack

• one invocation is active at a time: its frame is on the top of stack

frame: stack: active

pop!

variables

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple

invocations share code.

Variables for an invocation exist in a frame

• the frames are stored in the stack

• one invocation is active at a time: its frame is on the top of stack

• if a function calls itself, there will be multiple frames at the same time for

the multiple invocations of the same function

frame: stack:
fact

variables fact
fact
fact
global

global

time
0 1 2 3 4 5 6

Current

Runtime Stack

call fact(3)

Deep Dive:

Runtime Stack
def fact(n):

if n == 1:
return 1

p =fact(n-1)
return n * p

global global

fact

n=3

time
0 1 2 3 4 5 6

new, active frame

Current

Runtime Stack

Deep Dive:

Runtime Stack
def fact(n):

if n == 1:
return 1

p =fact(n-1)
return n * p

global global

fact

n=3

p=

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack
def fact(n):

if n == 1:
return 1

p =fact(n-1)
return n * p

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack
def fact(n):

if n == 1:
return 1

p =fact(n-1)
return n * p

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1 return 1 (base case)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=

return 1 (base case)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=1

return 1 (base case)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=1

return 1 (base case)

return 2 (n*p)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=1

global

fact

n=3

p=

return 1 (base case)

return 2 (n*p)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=1

global

fact

n=3

p=2

return 1 (base case)

return 2 (n*p)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=1

global

fact

n=3

p=2

return 1 (base case)

return 2 (n*p)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

return 6 (n*p)

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

global global

fact

n=3

p=

global

fact

n=3

p=

fact

n=2

p=

global

fact

n=3

p=

fact

n=2

p=

fact

n=1

global

fact

n=3

p=

fact

n=2

p=1

global

fact

n=3

p=2

global

return 1 (base case)

return 2 (n*p)

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

return 6 (n*p)

time
0 1 2 3 4 5 6

Deep Dive:

Runtime Stack

“Infinite” Recursion Bugs

What happens if:

•

•

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

“Infinite” Recursion Bugs

What happens if:

• factorial is called with a negative number?

•

never

terminates

-1

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

“Infinite” Recursion Bugs

What happens if:

• factorial is called with a negative number?

• we forgot the “n == 1” check?

global

fact

n=3

fact

n=2

3

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

“Infinite” Recursion Bugs

What happens if:

• factorial is called with a negative number?

• we forgot the “n == 1” check?

3

global

fact

n=3

fact

n=2

fact

n=1

fact

n=0

fact

n=-1

def fact(n):
if n == 1:

return 1
p =fact(n-1)
return n * p

“Infinite” Recursion Bugs

What happens if:

• factorial is called with a negative number?

• we forgot the “n == 1” check?

3

global

fact

n=3

fact

n=2

fact

n=1

fact

n=0

fact

n=-1

never

terminates

Coding Demos

Demo 1: Pretty Print

Goal: format nested lists of bullet points

Input:
• The recursive lists

Output:
• Appropriately-tabbed items

Example:

>>> pretty_print([“A”, [“1”, “2”, “3”,],

“B”, [“4”, [“i”, “ii”]]])

*A

*1

*2

*3

*B

*4

*i

*ii

Demo 2: Recursive List Search

Goal: does a given number exist in a recursive structure?

Input:
• A number

• A list of numbers and lists (which contain other numbers and lists)

Output:
• True if there’s a list containing the number, else False

Example:

>>> contains(3, [1,2,[4,[[3],[8,9]],5,6]])

True

>>> contains(12, [1,2,[4,[[3],[8,9]],5,6]])

False

Conclusion: Review Learning Objectives

Learning Objectives: Recursive Information

What is a recursive definition/structure?

• Definition contains term

• Structure refers to others of same type

• Example: a dictionary contains dictionaries (which may contain...)

recursive case

base case

Learning Objectives: Recursive Code

What is recursive code?

• Function that sometimes itself (maybe indirectly)

Why write recursive code?

• Real-world data/structures are recursive; intuitive for code to reflect data

Where do computers keep local variables for recursive calls?

• In a section of memory called a “frame”

• Only one function is active at a time, so keep frames in a stack

What happens to programs with infinite recursion?

• Calls keep pushing more frames

• Exhaust memory, throw StackOverflowError

https://xkcd.com/244/

Questions?

