CS 220: Recursion

The Art of Self Reference

Meena Syamkumar
Michael Doescher

Part 2 of 3 - Data Structures

= | |sts and Dictionaries

Part 2 of 3 - Data Structures

= | |sts and Dictionaries
= CSV and JSON

Part 2 of 3 - Data Structures

= | |sts and Dictionaries
= CSVand JSON
» (Objects and References

Part 2 of 3 - Data Structures

Lists and Dictionaries
CSV and JSON

Objects and References
Fancy Functions

= Recursion
= (Generators

» Functions are Objects

Part 2 of 3 - Data Structures

Lists and Dictionaries
CSV and JSON

Objects and References
Fancy Functions

= Recursion
= (Generators

» Functions are Objects

Part 2 of 3 - Data Structures

Lists and Dictionaries
CSV and JSON

Objects and References
Fancy Functions

= Recursior
» (Senerators

» Functions are Objects
Files

Errors

Goal: use self-reterence Is a meaningful way

Hofstadter's Law: “It always takes longer than you expect, even when you
take into account Hofstadter's Law.”

(From Godel, Escher, Bach)

good advice for CS assignments!

“Dialectical Materialism is materialism that involves dialectic.”

https://en.wikipedia.org/wiki/Circular_definition

Goal: use self-reterence Is a meaningful way

Hofstadter's Law: “It always takes longer than you expect, even when you
take into account Hofstadter's Law.”

(From Godel, Escher, Bach)

good advice for CS assignments!

“Dialectical Materialism is materialism that involves dialectic.”

“The Marxist theory (adopted as the official philosophy of the Soviet communists) that political and
historical events result from the conflict of social forces and are interpretable as a series of
contradictions and their solutions. The conflict is believed to be caused by material needs.”

https://en.wikipedia.org/wiki/Circular_definition

Goal: use self-reterence Is a meaningful way

mountain: “a landmass that projects conspicuously above its surroundings
and is higher than a hill”

hill: “a usually rounded natural elevation of land lower than a mountain”

(Example of unhelpful self reference from Merriam-Webster dictionary)

https://en.wikipedia.org/wiki/Circular_definition

Overview: Learning Objectives

Recursive definitions and recursive information
- What is a recursive definition/structure?
- Arbitrarily vs. infinitely

Recursive code
- What is recursive code?
Ny write recursive code?

W
- Where do computers keep local variables for recursive calls?
What happens to programs with infinite recursion?

Read Think Python

+ Ch 5: "Recursion” through “Infinite Recursion”
+ Ch 6: "More Recursion” through end

What is Recursion?

Recursive definitions
- Contain the term in the body
- Dictionaries, mathematical definitions, etc

A number X Is a positive even number Iif:

What is Recursion?

Recursive definitions
- Contain the term in the body
- Dictionaries, mathematical definitions, etc

A number X Is a positive even number Iif:

XIS 2
OR

*X eguals another positive even number plus two

What is Recursion?

Recursive definitions
- Contain the term in the body
- Dictionaries, mathematical definitions, etc

Recursive structures may refer to structures of the same type
- data structures or real-world structures

rows = |
:\\AII, :1,2]], rOWS
“B”, [3,4,5]],
(“C”,[6,7]]

Recursive structures are EVERYWHERE!

nature

files

“name”: “alice”,
“grade”: “A",
“score”: 90,
Yexams”: |

“midterm”: {“points”:94,

“total”:100},
“final”: {“points”: 98,
“total”: 100}

formats

Example: Trees (Finite Recursion)

erm: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

Example: Trees (Finite Recursion)

erm: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

Example: Trees (Finite Recursion)

erm: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

Example: Trees (Finite Recursion)

erm: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

Example: Trees (Finite Recursion)

erm: branch

Def: wooden stick, with an end
splitting into other branches, OR
terminating with a leaf

Example: Trees (Finite Recursion)

erm: branch

Def: wooden stick, with an end
splitting into other branches, OR

terminating with a leaf \

trees are arbitrarily large:
recursive case allows
iIndefinite growth

arbitrarily 1= infinitely

Example: Trees (Finite Recursion)

Term: branch

Def: wooden stick, with an end
splitting into other branches, OR

termiiating with a leaf \

trees are arbitrarily large:

trees are finite: recursive case allows
eventual base case indefinite growth

allows completion

arbitrarily = infinitely

‘ base case (leat)

recursive case (branch)

Example: Directories (aka folders)

erm: directory

\ recursive because def contains term

N

Def: a collection of files and directories

@ @ Pl directoryA
{ % MO ol 52~ £% ~ =w e 0,
Favorites

++ Dropbox

@ AirDrop THT X1 X1

@ All My Files 1.txt 2.txt 3.txt directoryB directoryB2
¢ iCloud Drive

pfl"*; Applications

=] Desktop

™ Documents

Example: Directories (aka folders)

erm: directory

\ recursive because def contains term

N

Def: a collection of files and directories

o O | 7 directoryA

{ O ol B8~ X% ~

il
£
4
£
o

Favorites

il
+» Dropbox

@ AirDrop THT X1 X1
@, All My Files 100t 2.0t 3.0t directoryB directoryB2

¢ iCloud Drive
?’}'{ Applications ‘ ‘ ‘ V W
=] Desktop

|'EF'I Documents

file system tree

Example: Directories (aka folders)

erm: directory

\ recursive because def contains term

N

Def: a collection of files and directories

o O | 7 directoryA

{ O ol B8~ X% ~

il
£
4
£
o

Favorites

il
+» Dropbox

@ AirDrop THT X1 X1
@, All My Files 100t 2.0t 3.0t directoryB directoryB2

¢ iCloud Drive
?’}'{ Applications ‘ ‘ ‘ V W
=] Desktop

|'EF'I Documents

file system tree

Example: Directories (aka folders)

erm: directory
—_

Def: a collection of files and directories

00 directoryB
< é 00 ol Zmv | £~ =wv v
. Favorites
£ :,: Dropbox
@ AirDrop
Favorif @ All My Files directoryC readme.txt
-
" | & iCloud Drive
C@ :l'l\-: Applications
= (=) Desktop
= [Documen ts

¢ iCloud Drive

?-i*-... Applications

=] Desktop
|'EF'I Documents

file system tree

directoryB

recursive because def contains term

directoryB2

Example: Directories (aka folders)

erm: directory
—_

Def: a collection of files and directories

<

@
2 EnlERENE

@
{

Fawari
L B
A

@®

—1

=)

Favorites

<2 Dropbox
@ AirDrop

E Al My Files
> iCloud Drive
:l'l\-: Applications
(=) Desktop
B Documen ts

readme.txt

¢ iCloud Drive

:,.-i"-_.. Applications

=] Desktop
|'EF'I Documents

file system tree

directoryB

recursive because def contains term

directoryB2

Fawari

A
=
)

Example: Directories (aka folders)

erm: directory

N

N

Def: a collection of files and directories

@
< B=o1 = #.

directoryB

Favorites
<2 Dropbox
@ AirDrop
' E Al My Files
> iCloud Drive
:l'l\-: Applications
(=) Desktop
B Documents

iCloud Drive
Applications
Desktop

Documents

= 2 Q
® ® directoryC
< = 0D ol Zmv | v = =
Favorites
3+ Dropbox
@ AirDrop TXT
@ All My Files keep-going not-there-yet.txt

¢’ iCloud Drive
/2; Applications

) Desktop
™ Documents

file system tree

recursive because def contains term

directoryB2

Example: Directories (aka folders)

erm: directory

\ recursive because def contains term

N

Def: a collection of files and directories

00 directoryB
< B=o0wu = & =v 33 Q
@ | NON directoryC
Favorites —
4 33 Dropbox < = D ol BV X~ =v ;v Q
<>
@ AirDrop Favorites
Fawvori| .
e 2 All My Files 33 Dropbox
*" | & iCloud Drive @) AirDrop .
C@ 7% Applications E) All My Files keep-going not-there-yet.txt
—] Desktop .
= ¢ iCloud Drive directoryB2
S] Documents
A% - 43 Applications
¢ iCloud Drive ¥=% APP
N Deskto
S Applications L. P
M Documents

=] Desktop
|'EF'I Documents

file system tree

Example: Directories (aka folders)

erm: directory
—_

Def: a collection of files and directories

recursive because def contains term

00 directoryB
<> Bl=s mio s % = 2. Q
@ | NON directoryC
Favorites
4 33 Dropbox < = (0 101 S2v RV =v 2 Q
~ : @ © keep-going
@) Airbrop Favorites < N — o) = % . v —
Favaoril . T — a8 v v =V o Vv Se¢
o £ All My Files 32 Dropbox *
" | < iCloud Drive @) Airbrop Eavorites
',_\‘ . .
@) | 7 Applications E AllMy Files | %% Dropbox
— | [Desktop
=] < iCloud Drivel @ AirDrop
S] Documents
<7\ iCloud Drive /2 Applications @ All My Files directoryZ directoryZ-1 directoryZ-2 directoryZ-3
S Applications I Desktop ¢ iCloud Drive
M Documents A . :
&) Desktop 7=z Applications
™ Dacuments) Desktop
m SN N i

file system tree

Example: Directories (aka folders)

erm: directory

\ recursive because def contains term

N

Def: a collection of files and directories

00 directoryB
<> Bl=s mio s % = 2. Q
@ | NON directoryC
Favorites o
4 33 Dropbox < = (0 101 S2v RV =v 2 Q
_ : L @ keep-going
@ AirDrop Favorites < = 0 o = #‘ — >4 Q S
Favari . T — 058 v = v 22 . Search
o £ All My Files 32 Dropbox *
" | < iCloud Drive @) Airbrop Eavorites
A\ N
@ ¥=; Applications @ All My Files :‘: Dropbox
(=) Desktop
E) & iCloud Drive] (@) AirDrop
S] Documents
¢ iCloud Drive 7% Applications £ All My Files directoryZ directoryZ-1 directoryZ-2 directoryz-3
S Applications [Desktop & iCloud Drive
M Documents N - :
o] Desktop 7= Applications
™ Documents (= Desktop
m SN N i

file system tree

Example: (simplified) JSON Format

Example JSON Dictionary:

{

“name”: “alice”,
\\gradell : \\A//’
“score”: 96

J

Example: (simplified) JSON Format

Example JSON Dictionary: Term: json-dict
Def: a set of json-mapping's
{
“name”: “alice”,
\\grade//: \\A//’
“score”: 96

J

Example: (simplified) JSON Format

Example JSON Dictionary: Term: json-dict
Def: a set of json-mapping's
{
“name”: “alice”,
\\grade/I: \\A/I’
“score”: 96

J

Example: (simplified) JSON Format

Example JSON Dictionary: Term: json-dict
Def: a set of json-mapping's
{

“name”: “alice”,

“grade”: “A"Y, Term: json-mapping
“score”: 96 Def: a json-string (KEY) paired with a

J ' ' json-string OR json-number

OR json-dict (VALUE)
keys values

Example: (simplified) JSON Format

Example JSON Dictionary: Term: json-dict

Def: a set of json-mapping's

/

Term: json-mapping

Def: a json-string (KEY) paired with a
json-string OR json-number
json-dict (VALUE)

{

“name”: “alice”,
\\gradell : \\AI/’
“score”: 96

J

recursive self reference isn't always direct!

Example: (simplified) JSON Format

Example JSON Dictionary: Term: json-dict
Def: a set of json-mapping's
{

“name”: “alice”,

“grade”: A", Term: json-mapping

“score”: 96, Def: a json-string (KEY) paired with a
rexams”: | json-string OR json-number
“midterm”: 94, OR json-dict (VALUE)

“final”: 98

Example: (simplified) JSON Format

Example JSON Dictionary: Term: json-dict
Def: a set of json-mapping's
{

“name”: “alice”,

“grade”: A", Term: json-mapping

“score”: 96, Def: a json-string (KEY) paired with a
“examS”: { | Jjson-string OR json-number
"midterm”: {“points”:94, OR json-dict (VALUE)

“total”:100},
“final”: {“points”: 98,
“total”: 100}

Example: (simplified) JSON Format

Example JSON Dictionary: Term: json-dict
/ Def: a set of json-mapping's
{

“name”: “alice”, ‘

“grade”: © Term: json-mapping

A” 4
“score”: 96, ‘ Def: a json-string (KEY) paired with a
“exams”: /{ Json-string OR Json-number
“midterm”: /{ “points” : 94 ,‘ OR json-dict (VALUE)
“total”:100},
“final” :/{ “points”: 98, ‘
“total”: 100}‘

Overview: Learning Objectives

Recursive information
- What is a recursive definition/structure?
- Arbitrarily vs. infinitely

Recursive code
- What is recursive code?
Ny write recursive code?

W
- Where do computers keep local variables for recursive calls?
What happens to programs with infinite recursion?

Recursive Code

What is it”
- A function that calls itself (possible indirectly)

N
f O h
N

call call

Recursive Code

What is it”
- A function that calls itself (possible indirectly)

call

def f():

]tt()other code g\/r]

other code

call

Recursive Code

What is it”
- A function that calls itself (possible indirectly)

def g():
other code
h()
def f():
other code # other code
Y def h():

other code # other code

g()

other code

Recursive Code

What is it”
- A function that calls itself (possible indirectly)

Motivation: don't know how big the data is before execution
- Need either iteration or recursion
- In theory, these techniques are equally powerful

Recursive Code

What is it”
- A function that calls itself (possible indirectly)

Motivation: don't know how big the data is before execution
- Need either iteration or recursion

- In theory, these techniques are equally powertful

Why recurse? (instead of always iterating)

- In practice, often easier

. recursive code corresponds to recursive data
- reduce a big problem into a smaller problem

https://texastreesurgeons.com/services/tree-removal/

Recursive Student
Counting

OOOOO
mieronon P OOOOO

wise and benevolent *
teacher wearing a top hat

Recursive Student
Counting

Imagine:
A teacher wants to know how many
students are in a column.

What should each student ask @ @ @ @ @
the person behind them?
Constraints: @ @ @ @ @

- It Is dark, you can’t see the back
- You can’t get up to count

How many students
- You may talk to adjacent students are in this column?

- Mic Is broken (students in back can't
hear from front)

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

Strategy: reframe question as “how
many students are behind you?”

how many are behind you? <

AKOMOO

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

Strategy: reframe question as “how
many students are behind you?”

Reframing is the hardest part

how many are behind you? <

AKOMOO

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

Strategy: reframe question as “how
many students are behind you?”

Process:
If nobody Is behind you: say 0
else: ask them, say their answer+1

how many are behind you? <

AKOMOO

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

Strategy: reframe question as “how
many students are behind you?”

Process:
If nobody is behind you: say 0 how many are behind you? <
else: ask them, say their answer+1

how many are behind you?

AKOMOO

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

Strateqgy: reframe question as “how how many are behind you?
many students are behind you?”

how many are behind you?

how many are behind you?

Process:
If nobody is behind you: say 0 how many are behind you?
else: ask them, say their answer+1

how many are behind you?

AWAVAYAYA

AKOMOO

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

Strateqgy: reframe question as “how how many are behind you?
many students are behind you?”

how many are behind you?

Process:
If nobody is behind you: say 0 how many are behind you?
else: ask them, say their answer+1

how many are behind you?

AWAVAYAYA

AKOMOO

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

Strategy: reframe question as “how
many students are behind you?”

Process:

If nobody Is behind you: say 0
else: ask them, say their answer+1

Example from https://courses.cs.washington.edu/

how many are behind you?

how many are behind you?

how many are behind you?

courses/cse143/17au/

AWAVAYAYA

AKOMOO

Recursive Student
Counting

Strategy: reframe question as “how
many students are behind you?”

Process:
If nobody Is behind you: say 0
else: ask them, say their answer+1

Example from https://courses.cs.washington.edu/courses/cse143/17au/

Recursive Student
Counting

Strategy: reframe question as “how
many students are behind you?”

Process:
If nobody Is behind you: say 0
else: ask them, say their answer+1

N
-

N
N

N
W

A AAAN

Aha! Clearly there must
be 25 students in this
column

V

Example from https://courses.cs.washington.edu/courses/cse143/17au/

AKOMOO

Recursive Student
Counting

Strateqgy: reframe question as “how
many students are behind you?”

Process:

If nobody Is behind you: say 0
else: ask them, say their
answer+1

Observations:

- Each student runs the same “code”
- Each student has their own “state”

Example from https://courses.cs.washington.edu/

Aha! Clearly there mu]ﬁ

25 students in this column

courses/cse143/17au/

Practice: Reframing Factorials

NI=1Tx2x3x...x(N-2)x(N-1) x N

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1
21 = 1%2 = 2
31 = 1*%2%x3 = §
dho= Lrarord = o2d 4. Python Code:
51 = 1#%2%3%4*5 = 120
def fact(n):
2. Self Reference: pass # TODO

Goal: work from examples to get to recursive code

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1
21 = 1%2 = 2
31 = 1%2%3 = ¢
dho= Lrarord = o2d 4. Python Code:
51 = 1*2%3%x4*5 = 120
def fact(n):
2. Self Reference: pass # TODO

look for patterns that allow
rewrites with self reference

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1
21 = 1%2 = 2
31 = 1%¥2%3 = 6
4t = 1maw3rd = 24 4. Python Code:
(5' = 1*%¥2%3%4*5 = 120
— def fact(n):
2. Self Reference: pass # TODO

look for patterns that allow
rewrites with self reference

Example: Factorials

1. Examples: 3. Recursive Definition:

11 =1

21 = 1%2 = 2

31 = 1%2%3 = 6

4t = 1maw3rd = 24 4. Python Code:
(5' = 1*%¥2%3%4*5 = 120

— def fact(n):

2. Self Reference: pass # TODO

11 =

21 =

31 =

41 =

51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1
21 = 1%2 = 2
3! = 1*%2*%3 = ¢
40 = Lrew3md = 2d 4. Python Code:
51 = 1*2%3%x4*5 = 120
def fact(n):
2. Self Reference: pass # TODO
11 =
21 =
31 =
41 =

51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1
21 = 1*2 = 2
3! = 1*%2*%3 = ¢
40 = 1r2w3ra = 24 4. Python Code:
51 = 1*2%3%x4*5 = 120
def fact(n):
2. Self Reference: pass # TODO
11 =
21 =
31 =
41 = 31 x 4
51 = 41 % 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1
21 = 1*2 = 2
31 = 1*2%3 = §
@1 o= lrersra = 2d 4. Python Code:
51 = 1*2%3%x4*5 = 120
def fact(n):
2. Self Reference: pass # TODO
11 =
21 = 11 % 2
31 = 21 % 3
41 = 31 x 4
51 = 41 % 5

Example: Factorials

1. Examples:

1! =1

2V = 1*2 = 2

3! = 1*2*3 = 06

41 = 1*2*x3*4 = 24

5! = 1*x2*3*%4*x5 = 120

2. Self Reference:

1! = 1 don’t need a pattern
20 = 1! * 2 atthe start

3 =21 *3

41 = 3! x4

5! = 41" * 5

3. Recursive Definition:

4. Python Code:

def fact(n):
pass # TODO

Example: Factorials

1. Examples:

1! =1

2V = 1*2 = 2

3! = 1*2*3 = 06

41 = 1*2*x3*4 = 24

5! = 1*x2*3*%4*x5 = 120

2. Self Reference:

1 =1

20 =11 * 2
3! =21 * 3
41 = 31 * 4
5! = 41 * 5

3. Recursive Definition:

convert self-referring examples
to a recursive definition

4. Python Code:

def fact(n):
pass # TODO

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1 11is 1

21 = 1*2 = 2
31 = 1%2%3 = 6
1= 1rzrsra = 2d 4. Python Code:
51 = 1*2%3%4*5 = 120
def fact(n):
2. Self Reference: pass # TODO

1 =1

20 =11 * 2
3! =21 * 3
41 = 31 * 4
5! =41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
11 =1 11is 1

21 = 1*%2 = 2 NIIs 2227 for N>1
31 = 1*2*3 = 6

BT Lremora = ed 4. Python Code:
51 = 1*2%3%x4*5 = 120

def fact(n):
2. Self Reference: pass # TODO

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1 1'is1
21 = 1*2 = 2 N!'is (N-1)! * N for N>1
31 = 1#%2*3 = 6
4l = 1x2*3=4 = 2d 4. Python Code:
51 = 1#%2*3%4*5 = 120
def fact(n):
2. Self Reference: pass # TODO

11 =1

31 = 21 * 3 |
41 = 31 * 4 i
51 = 41 % 5 |

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1 1'is1
21 = 1*2 = 2 N!'is (N-1)! * N for N>1
31 = 1#%2*3 = 6
4l = 1x2*3=4 = 2d 4. Python Code:
51 = 1#%2*3%4*5 = 120
def fact(n):
2. Self Reference: pass # TODO
1! =1
21 = 11 * 2
31 = 21 % 3
41 = 31 * 4
51 = 41 % 5

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1 11is 1

21 = 1*2 = 2 N!'is (N-1)! * N for N>1
31 = 1*2*3 = 6

do= lrexdrd = 24 4. Python Code:

51 = 1%*2*3%4%5 = 120

def fact(n):

2. Self Reference: ifn==1

1 =1

20 =11 * 2
3! =21 * 3
41 = 31 * 4
5! =41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1 11is 1
21 = 1*2 = 2 N!'is (N-1)! * N for N>1
31 = 1*%2*%3 = 6
dro= lrer3rd = 24 4. Python Code:
51 = 1%2%3%4%5 = 120

def fact(n):
2. Self Reference: fn==1:

return 1

1! = 1 =fact(n-1)
21 = 11 * 2 eturnn * p
31 =21 * 3
41 = 31 * 4
51 = 41 * 5

Example: Factorials

1. Examples: 3. Recursive Definition:
1! =1 11is 1
21 = 1*2 = 2 N!'is (N-1)! * N for N>1
31 = 1*2*3 = 6
10 = 1¥2x3xd = 24 4. Python Code:
51 = 1%*2*3%4%5 = 120

def fact(n):
2. Self Reference: fn==1:

return 1

1! =1 o =fact(n-1)
21 = 11 * 2 returnn * p
31 =21 * 3
41 = 31 * 4 Let’'s “run” it!
51 = 4! * 5

Tracing Factorial

def fact(n):
fn==1:
return 1
=fact(n-1)
returnn * p

somebody
called fact(4)

fact(n=4)

Note, this is not a stack frame!
We're tracing code line-by-line.
Boxes represent which invocation.

Tracing Factorial

def fact(n):
= if n==1:
return 1
o =fact(n-1)
returnn * p

fact(n=4)
ifn==1:

Tracing Factorial

def fact(n):
fn==1:
return 1
=» ; =fact(n-1)

returnn * p

fact(n=4)
ifn==1:

Tracing Factorial

def fact(n):
fn==1:
return 1

= p =fact(n-1)

returnn * p

fact(n=4)
ifn==1:

fact(n=3)

Tracing Factorial

def fact(n):
= if n==1:
return 1
o =fact(n-1)
returnn * p

fact(n=4)

ifn==1:
fact(n=3)
ifn=="1:

Tracing Factorial

def fact(n):
fn==1:
return 1

= p =fact(n-1)

returnn * p

fact(n=4)

ifn==1:
fact(n=3)
ifn=="1:

Tracing Factorial facn=4)

fact(n=3)
ifn=="1:
def fact(n): fact(n=2)
ifn==1:
return 1

= p =fact(n-1)

returnn * p

Tracing Factorial facn=4)

fact(n=3)
ifn=="1:
def fact(n): fact(n=2)
P ifn==1: ifn==1:
return 1
o =fact(n-1)

returnn * p

Tracing Factorial facn=4)

fact(n=3)
fn=="1:
def fact(n): fa}]cc:t(rf21)_
ifn==1: th=="1
return 1

= p =fact(n-1)

returnn * p

Tracing Factorial facn=4)

fact(n=3)
fn==1:
def fact(n): fa}]cc:t(rf21)_
ifn==1: th=="1
return 1 fact(n=1)

= p =fact(n-1)

returnn * p

Tracing Factorial facn=4)

fact(n=3)
ifn==1:
def fact(n): fact(rEZ)_
P ifn==1: ifn==1:
return 1 fact(n=1)
p =fact(n-1) ifn==1:

returnn * p

Tracing Factorial facn=4)

fact(n=3)
ifn=="1:
def fact(n): fact(n=2)
ifn==1: fn==1.
= return 1 fact(n=1)
P =faCt(n-1) fn==1:

returnn * p return 1

Tracing Factorial

def fact(n):
fn==1:
return 1

= p =fact(n-1)

returnn * p

fact(n=4)
ifn==1:

fact(n=3)
ifn=="1:

fact(n=2)
ifn==1:

fact(n=1)
fn==1:
return 1

p="1 J

Tracing Factorial

def fact(n):
fn==1:
return 1
o =fact(n-1)
= returnn*p

fact(n=4)
ifn==1:

fact(n=3)
ifn=="1:

fact(n=2)
ifn==1:

fact(n=1)
fn==1:
return 1

p="1 J

return 2

Tracing Factorial

def fact(n):
fn==1:
return 1

= p =fact(n-1)

returnn * p

fact(n=4)
ifn==1:

fact(n=3)
ifn=="1:

fact(n=2)
ifn==1:

fact(n=1)
fn==1:
return 1

p="1 J

return 2

0=2 «/

Tracing Factorial

def fact(n):
fn==1:
return 1
o =fact(n-1)
= returnn*p

fact(n=4)
ifn==1:

fact(n=3)
ifn=="1:

fact(n=2)
ifn==1:

fact(n=1)
fn==1:
return 1

p="1 J

return 2

0=2 «/

return 6

Tracing Factorial

def fact(n):
fn==1:
return 1

= p =fact(n-1)

returnn * p

fact(n=4)
ifn==1:

fact(n=3)
ifn=="1:

fact(n=2)
ifn==1:

fact(n=1)
fn==1:
return 1

p="1 J

return 2

0=2 «/

return 6

p=6</l

Tracing Factorial

def fact(n):
fn==1:
return 1
o =fact(n-1)
= returnn*p

fact(n=4)
ifn==1:

fact(n=3)
ifn=="1:

fact(n=2)
ifn==1:

fact(n=1)
fn==1:
return 1

p="1 J

return 2

0=2 «/

return 6

p=6</l

return 24

Tracing Factorial

def fact(n):
ifn==1:
return 1
o =fact(n-1)
returnn * p

fact(n=4)
ifn==1:

fact(n=3)
ifn=="1:

fact(n=2)
ifn==1:

fact(n=1)
fn==1:
return 1

p="1 J

return 2

0=2 «/

return 6

p=6 «/
return 24
]

P

e

Tracing Factorial A
facf(n=8)
ifn==1:
def fact(n): fact(n=p)
ifn==1: ==
return 1 fact(n=1)
p =fact(n-1) if == 1:
returnn * p return 1
P31
urn 2
P32
How does Python keep urn 6
all the variables separate? @6
urn 24

e

Tracing Factorial A
facf(n=8)
ifn==1:
def fact(n): fact(n=p)
ifn==1: ==
return 1 fact(n=1)
p =fact(n-1) if == 1:
returnn * p return 1
P31
urn 2
P32
How does Python keep urn 6
all the variables separate? @6
urn 24

frames to the rescue!

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple
invocations share code.

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple
iInvocations share code.

Variables for an invocation exist in a frame

frame: variables

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple
iInvocations share code.

Variables for an invocation exist in a frame
-the frames are stored in the stack

| | T~
frame: variables stack: active

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple
iInvocations share code.

Variables for an invocation exist in a frame
- the frames are stored in the stack
- One invocation is active at a time: its frame is on the top of stack

pop!
I | T~
frame: | variables stack: active

Deep Dive: Invocation State

In recursion, each function invocation has its own state, but multiple
iInvocations share code.

Variables for an invocation exist in a frame
- the frames are stored in the stack
- One invocation is active at a time: its frame is on the top of stack

- if a function calls itself, there will be multiple frames at the same time for
the multiple invocations of the same function

I | fact
frame: | variables | stack: fact
fact
global

Deep DIVG def fact(n):

ifn==1;

Runtime Stack eturn 1

o =fact(n-1)
returnn*p

call fact (3)

Current
Runtime Stack

v

global

time

Deep D IVG * def fact(n):

: ifn==1:
RU ntlme StaCk return 1
p =fact(n-1)
returnn * p
Current
Runtime Stack
fact A |
n=3 new, active frame
global global g

0 1 2 3 4

time

Deep Dive:

def fact(n):
: ifn==1:
Runtlme StaCk return 1
p =fact(n-1)
returnn * p
fact
n=3
p:
global global
0 1 3 4

time

Deep Dive:

def fact(n):
- fn==1:
Runtlme StaCk returnl
o =fact(n-1)
returnn*p
fact
n=2
fact fact
n=3 n=3
P= P=
global global global
0 1 2 3 4

time

Deep Dive:

def fact(n):
- fn==1:
Runtlme StaCk returnl
p =fact(n-1)
returnn*p
fact
n=2
p:
fact fact
n=3 n=3
P= P=
global global global
0 1 % 3 4

time

Deep D IVG * def fact(n):

; fn==1:
Runtlme StaCk returnl
o =fact(n-1)
returnn*p
fact
n=1
fact fact
n=2 n=2
P= P=
fact fact fact
n=3 n=3 n=3
P= P= P=
global global global global

0 1 2 3 4

time

Deep DIVG de.ffact(n):
Runtime Stack P ot

return 1
o =fact(n-1)
returnn*p
fact
n=1 return 1 (base case)
fact fact
n=2 n=2
P= P=
fact fact fact
n=3 n=3 n=3
P= P= P=
global global global global

0 1 2 3 4 5

time

Deep DIVG def fact(n):

: ifn==1:
Runtlme StaCk return 1
o =fact(n-1)
returnn*p
fact
n=1 return 1 (base case)
fact fact fact
n==2 n=2 n=2
P= P= P=
fact fact fact fact
n=3 n=3 n=3 n=3
P= P= P= P=
global global global global global

0 1 2 3 4 5

time

Deep DIVG def fact(n):

: ifn==1:
Runtlme StaCk return 1
o =fact(n-1)
returnn*p
fact
n=1 return 1 (base case)
fact fact fact
n==2 n=2 n=2
p= p= p=1
fact fact fact fact
n=3 n=3 n=3 n=3
P= P= P= P=
global global global global global

0 1 2 3 4 5

time

Deep Dive:

Runtime Stack

def fact(n):

ifn==1:
return 1
o =fact(n-1)

* returnn*p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
p= p= p=1
fact fact fact fact
n=3 n=3 n=3 n=3
P= P= P= P=
global global global global global
0 1 2 3 4 5

time

Deep Dive:

Runtime Stack

def fact(n):
ifn==1:
return 1
o =fact(n-1)
returnn*p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
p= p= p=1
fact fact fact fact fact
n=3 n=3 n=3 n=3 n=3
P= P= P= P= P=
global global global global global global
0 1 2 3 4 5 o

time

Deep Dive:

Runtime Stack

def fact(n):
ifn==1:
return 1
o =fact(n-1)
returnn*p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
p= p= p=1
fact fact fact fact fact
n=3 n=3 n=3 n=3 n=3
p= p= p= p= p=2
global global global global global global
0 1 % 3 4 5 o

time

Deep Dive:

Runtime Stack

def fact(n):
ifn==1:
return 1
o =fact(n-1)
returnn*p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
P= p= p=1
fact fact fact fact fact
n=3 n=3 n=3 n=3 n=3 return 6 (n*p)
p= p= p= p= p=2 \1\
global global global global global global
0 1 % 3 4 5 9

time

Deep Dive:

Runtime Stack

def fact(n):
ifn==1:
return 1
o =fact(n-1)
returnn*p

fact
n=1 return 1 (base case)
fact fact fact
n=2 n=2 n=2 return 2 (n*p)
p= p= p:1
fact fact fact fact fact
n=3 n=3 n=3 n=3 n=3 return 6 (n*p)
p= p= p= p= p:2 \
global global global global global global global
0 1 2 3 4 5 o

time

“Infinite” Recursion Bugs

What happens if:

def fact(n):
ifn==1:
return 1
o =fact(n-1)
returnn *p

“Infinite” Recursion Bugs

What happens if:
- factorial is called with a negative number?

]

def fact(n):

ifn==1:

return 1
o =fact(n-1)
returnn *p
never
terminates

“Infinite” Recursion Bugs

What happens if:
- factorial is called with a negative number?
. we forgot the “n == 1" check?

—— 3
def fact(n):
—A==21:
— e
o =fact(n-1)
returnn *p

fact
n=2

fact
n=3

global

“Infinite” Recursion Bugs

What happens if:

- factorial is called with a negative number?
. we forgot the “n == 1" check?

—— 3
def fact(n):
—A==21:
— e
o =fact(n-1)
returnn *p

fact

fact

“Infinite” Recursion Bugs

What happens if:

- factorial is called with a negative number?
. we forgot the “n == 1" check?

3
def fact(n):
—A==21:
— e
o =fact(n-1)
returnn *p

never
terminates

fact

fact

Coding Demos

Demo 1: Pretty Print

Goal: format nested lists of bullet points

Input:
® The recursive lists

Output:
® Appropriately-tabbed items
Example:

>>> pretty_print ([\\A//, [\\1//, \\2//, \\311, :| ,
\\B//, [\\4//, [\\i//, \\ii//]]])

*A
*1
*2
*3

*B
x4

Demo 2: Recursive List Search

Goal: does a given number exist in a recursive structure?

Input:
® Anumber
® Alist of numbers and lists (which contain other numbers and lists)

Output:
®* True if there's a list containing the number, else False

Example:

>>> contains (3, [1,2,1[4,[[3],18,%9]]1,5,0]])
True

>>> contains (12, [1,2,1[4,[1[3],18,9]11,5,061])
False

Conclusion: Review Learning Objectives

Learning Objectives: Recursive Information

What is a recursive definition/structure?

- Definition contains term

. Structure refers to others of same type

- Example: a dictionary contains dictionaries (which may contain...)

/ recursive case

‘ base case

Learning Objectives: Recursive Code

What iIs recursive code?
- Function that sometimes itself (maybe indirectly)

Why write recursive code?
- Real-world data/structures are recursive; intuitive for code to reflect data

Where do computers keep local variables for recursive calls?
- In a section of memory called a “frame”
- Only one function is active at a time, so keep frames in a stack

What happens to programs with infinite recursion?
. Calls keep pushing more frames
- Exhaust memory, throw StackOverflowError

Questions?

YOUR PARTY ENTERS THE TAVERN.

I GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET QUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

https://xkcd.com/244/

