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Radical Claim:



Radical Claim:

implications:
® variables can reference functions
lists/dicts can reference functions
we can pass function references to other functions
we can pass lists of function references to other functions



Function References (Part 1)

Outline
® functions as objects
® sort
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[1 , 2, 3] Explanation: x should reference a new list object
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X = []_ , ) , 3] Explanation: x should reference a new list object

X Explanation: y should reference whatever x references
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def T ( ) ' Explanation: f should reference a new function object

return "hi"
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both of these calls would
have run the same code,
returning the same result:
®z = f()
®z = g()
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very similar (reference new object)

very similar (reference existing object)




very similar (reference new object)

very similar (reference existing object)

7 = f ( ) - very different (invoke vs. reference)
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Function References (Part 1)

Outline
® functions as objects
® sort



Example: Sorting Names

List of tuples:

names = |
(“Catherine”, *“Baker”),
(“Alice”, *“Clark”),
(“Bob"”, “Adams”),

Catherine Baker
Bob Adams
Alice Clark




Example: Sorting Names

List of tuples:

names = |
(“Catherine”, *“Baker”),

(“Alice”, *“Clark”),
( llBObll , IIAdams "n ) ,

names.sort ()

sorting tuples is done
on first element
(ties go to 2nd element)
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List of tuples:

names = |
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Example: Sorting Names

List of tuples:

names = |
(“Catherine”, *“Baker”),

(“Alice”, *“Clark”),
( llBObll , IIAdams ”n ) ,

names.sort ()

what if we want to
sort by the last name?

or by the length of the name?
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Example: Sorting Names

List of tuples:

names = |
(“Catherine”, *“Baker”),
(“Alice”, *“Clark”),
(“Bob"”, *“Adams"),

def extract(name tuple):
return name tuple[1]

names.sort (key=extract)
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Example: Sorting Names

List of tuples:

names = |
(“Catherine”, *“Baker”),
(“Alice”, *“Clark”),
(“Bob"”, *“Adams"),

def extract(name tuple):
return len(name tuple[0])

names.sort (key=extract)
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Example: Sorting Names

List of tuples:

names = | Catherine Baker
( Ca?herlne , “Baker”), Bob Adarms
(“Alice”, *“Clark"),
(“Bob"”, “Adams”"), Alice Clark

def extract(name tuple):
return len(name tuple[0])

names.sort (key=extract)

Bob Adams

Alice Clark

Catherine Baker




