[220] Functions as Objects

Meena Syamkumar
Mike Doescher

Radical Claim:

Radical Claim:

implications:
® variables can reference functions
lists/dicts can reference functions
we can pass function references to other functions
we can pass lists of function references to other functions

Function References (Part 1)

Outline
® functions as objects
® sort

[1,2,3]

= X
your notes should probably include
def f(): this example, with an explanation of
return "hi" what each of the 5 steps do!
= f which line of code is most novel for us?

f()

def

(@]
[l

[1,2,3]
X

f():

return

f

f()

11 hill

State:

references

objects

[1 , 2, 3] Explanation: x should reference a new list object

= X
def f():
return "hi"
g =1
7 = f()
State:
references objects
x| 17— \

[1 , 2, 3] Explanation: x should reference a new list object

= X
def f():
return "hi"
g =1
7 = f()
State:
references objects
x| 17— \

[1 , 2, 3] Explanation: x should reference a new list object

X
[l

X Explanation: y should reference whatever x references

def f():
return ""hi"

f

(@]
[l

z = f()

State:

references : objects

33— S

[1 , 2, 3] Explanation: x should reference a new list object

X
[l

X Explanation: y should reference whatever x references

<
[l

f():

return "hi"

f

(@]
[l

z = f()

State:

references : objects

33— S

X = []_ ,) , 3] Explanation: x should reference a new list object

X Explanation: y should reference whatever x references

<
I

def T () ' Explanation: f should reference a new function object

return "hi"

f

(@]
[l

z = ()

State:
references objects
y L

fl — T : :
: function object

X = []_ ,) , 3] Explanation: x should reference a new list object

X Explanation: y should reference whatever x references

<
I

def T () ' Explanation: f should reference a new function object

return "hi"

f

z = ()

State:
references objects
y L

fl — T : :
: function object

X = []_ ,) , 3] Explanation: x should reference a new list object

X Explanation: y should reference whatever x references

<
I

def T () ' Explanation: f should reference a new function object

return "hi"

1) Explanation: g should reference whatever f references

z = f()

State:

references : objects

XL 5\‘|23
y L

f

g

— ﬁ\ o c
' function object

——

<
I

def

[1,2,3]
X

f():

return

f

f()

i1 hill

Explanation: x should reference a new list object

Explanation: y should reference whatever x references

Explanation: f should reference a new function object

Explanation: g should reference whatever f references

State:

references

-

objects

/

L 123

' function object

X
y
£l —
g
y 4

——

<
I

def

[1,2,3]
X

f():

return

f

f()

i1 hill

Explanation: x should reference a new list object

Explanation: y should reference whatever x references

Explanation: f should reference a new function object

Explanation: g should reference whatever f references

Explanation: z should reference whatever f returns

State:
references . objects
y L
=
g —
z o / "hi"

x = [1,2,3]
X

<
I

def f():
return

f

.'»z

both of these calls would
have run the same code,
returning the same result:
®z = f()
®z = g()

f()

i1 hill

Explanation: x should reference a new list object

Explanation: y should reference whatever x references

Explanation: f should reference a new function object

Explanation: g should reference whatever f references

Explanation: z should reference whatever f returns

State:
references . objects
y L
=
g —
z o / "hi"

very similar (reference new object)

N
[l
—h
~~
~—"

very similar (reference new object)

very similar (reference existing object)

very similar (reference new object)

very similar (reference existing object)

7 = f () - very different (invoke vs. reference)

CODING DEMOS
Python [utor]

Function References (Part 1)

Outline
® functions as objects
® sort

Example: Sorting Names

List of tuples:

names = |
(“Catherine”, *“Baker”),
(“Alice”, *“Clark”),
(“Bob"”, “Adams”),

Catherine Baker
Bob Adams
Alice Clark

Example: Sorting Names

List of tuples:

names = |
(“Catherine”, *“Baker”),

(“Alice”, *“Clark”),
(llBObll , IIAdams "n) ,

names.sort ()

sorting tuples is done
on first element
(ties go to 2nd element)

Catherine Baker
Bob Adams
Alice Clark
Alice Clark
Bob Adams
Catherine Baker

Example: Sorting Names

List of tuples:

names = |
(“Catherine”, *“Baker”),

(“Alice”, *“Clark”),
(llBObll , IIAdamS ”n) ,

names.sort ()

what if we want to
sort by the last name?

Catherine Baker
Bob Adams
Alice Clark
Alice Clark
Bob Adams
Catherine Baker

Example: Sorting Names

List of tuples:

names = |
(“Catherine”, *“Baker”),

(“Alice”, *“Clark”),
(llBObll , IIAdams ”n) ,

names.sort ()

what if we want to
sort by the last name?

or by the length of the name?

Catherine Baker
Bob Adams
Alice Clark
Alice Clark
Bob Adams
Catherine Baker

Example: Sorting Names

List of tuples:

names = |
(“Catherine”, *“Baker”),
(“Alice”, *“Clark”),
(“Bob"”, *“Adams"),

def extract(name tuple):
return name tuple[1]

names.sort (key=extract)

Catherine Baker
Bob Adams
Alice Clark

Example: Sorting Names

List of tuples:

names = |
(“Catherine”, *“Baker”),
(“Alice”, *“Clark”),
(“Bob"”, *“Adams"),

def extract(name tuple):
return name tuple[1]

names.sort (key=extract)

Catherine Baker
Bob Adams
Alice Clark
Bob Adams
Catherine Baker
Alice Clark

Example: Sorting Names

List of tuples:

names = |
(“Catherine”, *“Baker”),
(“Alice”, *“Clark”),
(“Bob"”, *“Adams"),

def extract(name tuple):
return len(name tuple[0])

names.sort (key=extract)

Catherine Baker
Bob Adams
Alice Clark

Example: Sorting Names

List of tuples:

names = | Catherine Baker
(Ca?herlne , “Baker”), Bob Adarms
(“Alice”, *“Clark"),
(“Bob"”, “Adams”"), Alice Clark

def extract(name tuple):
return len(name tuple[0])

names.sort (key=extract)

Bob Adams

Alice Clark

Catherine Baker

