
[220] Functions as Objects
Meena Syamkumar

Mike Doescher



Radical Claim:

Functions are Objects



Radical Claim:

Functions are Objects

implications:
• variables can reference functions
• lists/dicts can reference functions
• we can pass function references to other functions
• we can pass lists of function references to other functions
• ...



Function References (Part 1)

Outline
• functions as objects
• sort



x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

your notes should probably include 
this example, with an explanation of 
what each of the 5 steps do!

which line of code is most novel for us?



x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

State:

references objects



State:

references objects

x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

Explanation: x should reference a new list object

x
1 2 3



State:

references objects

x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

Explanation: x should reference a new list object

x
1 2 3



State:

references objects

x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

Explanation: x should reference a new list object

Explanation: y should reference whatever x references

x
y

1 2 3



State:

references objects

x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

Explanation: x should reference a new list object

Explanation: y should reference whatever x references

x
y

1 2 3



State:

references objects

x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

Explanation: x should reference a new list object

Explanation: y should reference whatever x references

Explanation: f should reference a new function object

x
y
f function object

1 2 3



State:

references objects

x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

Explanation: x should reference a new list object

Explanation: y should reference whatever x references

Explanation: f should reference a new function object

x
y
f function object

1 2 3



State:

references objects

x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

Explanation: x should reference a new list object

Explanation: y should reference whatever x references

Explanation: f should reference a new function object

Explanation: g should reference whatever f references

x
y
f
g

function object

1 2 3



State:

references objects

x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

Explanation: x should reference a new list object

Explanation: y should reference whatever x references

Explanation: f should reference a new function object

Explanation: g should reference whatever f references

x
y
f
g
z

function object

1 2 3



State:

references objects

x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

Explanation: x should reference a new list object

Explanation: y should reference whatever x references

Explanation: f should reference a new function object

Explanation: g should reference whatever f references

Explanation: z should reference whatever f returns

x
y
f
g
z

function object

1 2 3

"hi"



State:

references objects

x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

Explanation: x should reference a new list object

Explanation: y should reference whatever x references

Explanation: f should reference a new function object

Explanation: g should reference whatever f references

Explanation: z should reference whatever f returns

x
y
f
g
z

function object

1 2 3

"hi"

both of these calls would
have run the same code,
returning the same result:
• z = f()
• z = g()



x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

very similar (reference new object)



x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

very similar (reference new object)

very similar (reference existing object)



x = [1,2,3]
y = x

def f():
return "hi"

g = f

z = f()

very similar (reference new object)

very similar (reference existing object)

very different (invoke vs. reference)



CODING DEMOS
[Python Tutor]



Function References (Part 1)

Outline
• functions as objects
• sort



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

Catherine Baker

Bob Adams

Alice Clark



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

names.sort()

Catherine Baker

Bob Adams

Alice Clark

Alice Clark

Bob Adams

Catherine Baker

sorting tuples is done
on first element

(ties go to 2nd element)



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

names.sort()

Catherine Baker

Bob Adams

Alice Clark

Alice Clark

Bob Adams

Catherine Baker

what if we want to
sort by the last name?



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

names.sort()

Catherine Baker

Bob Adams

Alice Clark

Alice Clark

Bob Adams

Catherine Baker

what if we want to
sort by the last name?

or by the length of the name?



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

def extract(name_tuple):
return name_tuple[1]

names.sort(key=extract)

Catherine Baker

Bob Adams

Alice Clark



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

def extract(name_tuple):
return name_tuple[1]

names.sort(key=extract)

Catherine Baker

Bob Adams

Alice Clark

Bob Adams

Catherine Baker

Alice Clark



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

def extract(name_tuple):
return len(name_tuple[0])

names.sort(key=extract)

Catherine Baker

Bob Adams

Alice Clark



Example: Sorting Names

List of tuples:

names = [
(“Catherine”, “Baker”),
(“Alice”, “Clark”),
(“Bob”, “Adams”),

]

def extract(name_tuple):
return len(name_tuple[0])

names.sort(key=extract)

Catherine Baker

Bob Adams

Alice Clark

Bob Adams

Alice Clark

Catherine Baker


