
[220] Iterators / Generators
Meena Syamkumar

Mike Doescher

Iterators/Generators (Part 2)

Outline
• when normal functions aren't good enough
• yield keyword by example
• the scary vocabulary of iteration
• the open function
• demos

def get_one_digit_nums():
print("START")
nums = []
i = 0
while i < 10:

nums.append(i)
i += 1

print("END")
return nums

for x in get_one_digit_nums():
print(x)

how many times is the word "START" printed?

def get_one_digit_nums():
print("START")
nums = []
i = 0
while i < 10:

nums.append(i)
i += 1

print("END")
return nums

for x in get_one_digit_nums() [0,1,2,3,4,5,6,7,8,9]:
print(x)

how many times is the word "START" printed?

def get_one_digit_nums():
print("START")
nums = []
i = 0
while i < 10:

nums.append(i)
i += 1

print("END")
return nums

for x in get_one_digit_nums():
print(x)

time

running get_one_digit_nums code looping over results and printing

stage 1 stage 2ST
A

R
T

EN
D

def get_primes():
print("START")
nums = []
i = 0
while True:

if is_prime(i):
nums.append(i)

i += 1
print("END")
return nums

for x in get_primes():
print(x)

what does this code do?
assume there is an earlier
is_prime function

def get_primes():
print("START")
nums = []
i = 0
while True:

if is_prime(i):
nums.append(i)

i += 1
print("END")
return nums

for x in get_primes():
print(x)

to make this work, we'll need to learn a
completely new kind of function, the generator

def get_primes():
...

for x in get_primes():
print(x)

time

... continue forever ...

what we want:

def get_primes():
...

for x in get_primes():
print(x)

time

... continue forever ...

run get_primes just long
enough to get one prime LAZY (contrast with "eager")

def get_primes():
...

for x in get_primes():
print(x)

time

... continue forever ...

run get_primes just long
enough to get one prime LAZY (contrast with "eager")

print one number

def get_primes():
...

for x in get_primes():
print(x)

time

... continue forever ...

run get_primes just long
enough to get one prime LAZY (contrast with "eager")

print one number

RESUME get_primes to get another number

def get_primes():
...

for x in get_primes():
print(x)

time

... continue forever ...

run get_primes just long
enough to get one prime LAZY (contrast with "eager")

print one number

RESUME get_primes to get another number

we will stop and resume running
get_primes many times, even

though we only call it once

def get_primes():
...

for x in get_primes():
print(x)

time

... continue forever ...

run get_primes just long
enough to get one prime LAZY (contrast with "eager")

print one number

RESUME get_primes to get another number

we will stop and resume running
get_primes many times, even

though we only call it once

functions with this stop/resume
behavior are called generators

def get_primes():
... some code ...

yield VALUE

... more code ...

any function containing the yield
keyword anywhere is a generator

if you see this, all bets are off
regarding how you currently
understand functions to behave

gen def get_primes():
... some code ...

yield VALUE

... more code ...

any function containing the yield
keyword anywhere is a generator

if you see this, all bets are off
regarding how you currently
understand functions to behave

should we even consider it a function?

?

gen def get_primes():
... some code ...

yield VALUE

... more code ...

any function containing the yield
keyword anywhere is a generator

if you see this, all bets are off
regarding how you currently
understand functions to behave

should we even consider it a function?

?

Guido van Rossum
Python's Benevolent Dictator for Life

(until recently) https://www.python.org/dev/peps/pep-0255/#bdfl-pronouncements

Should we "introduce another new keyword
(say, gen or generator) in place of def"?

https://www.python.org/dev/peps/pep-0255/

gen def get_primes():
... some code ...

yield VALUE

... more code ...

any function containing the yield
keyword anywhere is a generator

if you see this, all bets are off
regarding how you currently
understand functions to behave

should we even consider it a function?

?

Guido van Rossum
Python's Benevolent Dictator for Life

(until recently) https://www.python.org/dev/peps/pep-0255/#bdfl-pronouncements

Argument for def: "generators are functions, but with
the twist that they're resumable"

Argument for gen: "a yield statement buried
in the body is not enough warning that the semantics are

so different"

https://www.python.org/dev/peps/pep-0255/

def get_primes():
... some code ...

yield VALUE

... more code ...

Guido van Rossum
Python's Benevolent Dictator for Life

(until recently) https://www.python.org/dev/peps/pep-0255/#bdfl-pronouncements

Argument for def: "generators are functions, but with
the twist that they're resumable"

Argument for gen: "a yield statement buried
in the body is not enough warning that the semantics are

so different"

always scan a function for yields
when trying to understand it

https://www.python.org/dev/peps/pep-0255/

Iterators/Generators (Part 2)

Outline
• when normal functions aren't good enough
• yield keyword by example
• the scary vocabulary of iteration
• the open function
• demos

yield by example (note, PyTutor does a bad job showing generators)

def f():
yield 1
yield 2
yield 3

for x in f():
print(x)

def f():
print("A")
yield 1
print("B")
yield 2
print("C")
yield 3

for x in f():
print(x)

def f():
yield 1
yield 2
yield 3

for x in f():
print(x)

for x in f():
print(x)

def f():
yield 1
yield 2
yield 3

for x in f():
for y in f():

print(x, y)

def f():
yield 1
yield 2
yield 3

gen = f()
for x in gen:

print(x)

def f():
yield 1
yield 2
yield 3

gen = f()
print(next(gen))
print(next(gen))

Iterators/Generators (Part 2)

Outline
• when normal functions aren't good enough
• yield keyword by example
• the scary vocabulary of iteration
• the open function
• demos

for x in :
some code

???

The Vocabulary
of Iteration

can go here

for x in :
some code

iterable

The Vocabulary
of Iteration

can go here

for x in :
some code

iterable

sequence

list str tuple range

is ais a

is an

The Vocabulary
of Iteration

can go here

for x in :
some code

iterable

sequence

list str tuple range

is ais a

is an

The Vocabulary
of Iteration

can go here

can be
converted

to a

Example:
L = list("ABC")

for x in :
some code

iterable

sequence

list str tuple range

is ais a

is an

The Vocabulary
of Iteration

can go here

dict.keys()
dict.values()

can be
converted

to a

Example:
L = list(d.keys())

for x in :
some code

iterable

sequence iterator

list str tuple range

is ais a

is an is an can give you an

The Vocabulary
of Iteration

can go here

dict.keys()
dict.values()

can be
converted

to a

Example:
it = iter("ABC")
first = next(it)

for x in :
some code

iterable

sequence iterator

generator object

generator function

list str tuple

yield keyword

range

contains a

returns a

is ais a

is an is an can give you an

The Vocabulary
of Iteration

is an

can go here

dict.keys()
dict.values()

can be
converted

to a

Example:
gen_obj = gen_function(...)
first = next(gen_obj)

for x in :
some code

iterable

sequence iterator

generator object

generator function

list str tuple

yield keyword

range

contains a

returns a

is ais a

is an is an can give you an

The Vocabulary
of Iteration

is an

can go here

dict.keys()
dict.values()

can be
converted

to a

careful!
• many use "generator" to refer to

both a generator function and a
generator object

• some use "generator" and
"iterator" as synonyms

Example:
gen_obj = gen_function(...)
first = next(gen_obj)

for x in :
some code

iterable

sequence iterator

generator object

generator function

list str tuple

yield keyword

range

contains a

returns a

is ais a

is an is an can give you an

The Vocabulary
of Iteration

is an

can go here

dict.keys()
dict.values()

can be
converted

to a

careful!
• many use "generator" to refer to

both a generator function and a
generator object

• some use "generator" and
"iterator" as synonyms

let's differentiate these better...

is x iterable?
if this works, then yes:

iter(x)

is y an iterator?
if this works, then yes:

next(y)

returns an iterator over x

returns next value from y

is x iterable?
if this works, then yes:

y = iter(x)

is y an iterator?
if this works, then yes:

next(y)

returns an iterator over x

returns next value from y

x = [1,2,3]
y = enumerate([1,2,3])
z = 3

Can you classify x, y, and z?

Things to try:

iter(x)
next(x)
etc.

Iterators/Generators (Part 2)

Outline
• when normal functions aren't good enough
• yield keyword by example
• the scary vocabulary of iteration
• the open function
• demos

Reading Files

path = “file.txt”
f = open(path)

open(…) function is built in

Reading Files

path = “file.txt”
f = open(path)

it takes a string argument,
which contains path to a file

This is a test!
3
2
1
Go!

file.txt

c:\users\meena\my-doc.txt

/var/log/events.log

../data/input.csv

Reading Files

path = “file.txt”
f = open(path)

it returns a file object

This is a test!
3
2
1
Go!

file.txt

file objects are iterators!

Reading Files

path = “file.txt”
f = open(path)

for line in f:
print(line)

This is a test!
3
2
1
Go!

file.txt

Output

This is a test!

3

2

1

Go!

Iterators/Generators (Part 2)

Outline
• when normal functions aren't good enough
• yield keyword by example
• the scary vocabulary of iteration
• the open function
• demos

Demo 1: add numbers in a file

Goal: read all lines from a file as integers and add them

Input:
• file containing 50 million numbers between 0 and 100

Output:
• The sum of the numbers

Example:

prompt> python sum.py
2499463617

Two ways:
• Put all lines in a list first
• Directly use iterable file

Bonus: create generator function
that does the str => int conversion

Demo 2: handy functions

Learn these:
• enumerate
• zip

Bonus: tuple packing/unpacking

Demo 3: sorting files by line length

Goal: output file contents, with shortest line first

Input:
• a text file

Output:
• print lines sorted

Demo 4: matrix load

Goal: load a matrix of integers from a file

Input:
• file name

Output:
• generator that yields lists of ints

1,2,3
4,5,6
7,8,9 generator [1,2,3]

...

