[220] Randomness

Meena Syamkumar
Mike Doescher

Announcements

- P10
- Due Friday May 1
- Late Days may not be used
- Everything must be turned in by May 1
- Point Redistribution
- Pinned Piazza Post
- Grade distribution is on the syllabus page
- Final Project
- Assigned Monday April 27
- Due Wednesday May 6 @11:59 PM
- Grading / Resubmission / Deadline Extension - Google Form
- Incredibly hard to change grades once they are submitted to the registrar
- Course Evaluations
- Contact Meena if you are interested in being a Mentor next fall.
- Want more?
- Data Science Consider CS 320!!!
- Computer Science CS 200, 300, 400
- Office Hours

Which series was randomly generated? Which did I pick by hand?

Recommended summer reading

The Visual Display of Quantitative Information by Edward R. Tufte

Misconceptions of chance. People expect that a sequence of events generated by a random process will represent the essential characteristics of that process even when the sequence is short. In considering tosses of a coin for heads or tails, for example, people regard the sequence $\mathrm{H}-\mathrm{T}-\mathrm{H}-\mathrm{T}-\mathrm{T}-\mathrm{H}$ to be more likely than the sequence $\mathrm{H}-\mathrm{H}-\mathrm{H}-\mathrm{T}-\mathrm{T}-\mathrm{T}$, which does not appear random, and also more likely than the sequence $\mathrm{H}-\mathrm{H}-\mathrm{H}-\mathrm{H}-\mathrm{T}-\mathrm{H}$, which does not represent the fairness of the coin. ${ }^{7}$ Thus,

Statistics Done Wrong by Alex Reinhart

Recommended summer reading

Thinking, Fast and Slow by Daniel Kahneman

The Visual Display of Quantitative Information by Edward R. Tufte
new york times bestseller
noise and the noi
the signal and th and the noise ant
the noise and tht
why so many
predictions fail-
but some don't
and the noise ant
nate silver the no
$=\square$
The Signal and the Noise
by Nate Silver

Statistics Done Wrong by Alex Reinhart

Why Randomize?

Games

Security

our focus

Outline

choice()
bugs and seeding
significance
histograms
normal()

New Functions Today

numpy. random:

- powerful collection of functions
- Choice

Series.plot.hist:

- similar to bar plot
- visualize spread of random results

S Scipy.org		
		cman man freas
Random sampling (numpy.random)		Talle of conents
Simple random data		momp , ramaen
mando di., in	Werina sion tape	Semm
	den	
		Preveusustoperic
Tommmmemmatisan	hibhinisise	
powerful collection of functions		
Distributions		
beeabets	Oram smpes fomo oeco	
bromalde pis stee)	Oen	
arbsurectit seat		
dindeletedot stere)	Oomesmpes tom tre oncher	

choice

from numpy.random import choice
result = choice([<choice1, choice2, ...])

choice

from numpy.random import choice

```
result = choice(["rock", "paper", "scissors"])
```


choice

from numpy.random import choice

```
result = choice(["rock", "paper", "scissors"])
print(result)
```


Output:

scissors

choice

from numpy.random import choice

```
result = choice(["rock", "paper", "scissors"])
print(result)
result = choice(["rock", "paper", "scissors"])
print(result)
```


Output:

each time choice is
called, a value is randomly selected (will vary run to run)

scissors
rock

choice

from numpy.random import choice
choice(["rock", "paper", "scissors"], size=5)
for simulation, we'll often want
to compute many random results

choice

from numpy.random import choice

it's list-like

Random values and Pandas

from numpy.random import choice
\# random Series
Series(choice(["rock", "paper", "scissors"], size=5))

0	rock
1	rock
2	scissors
3	paper
4	scissors
dtype $:$ object	

Random values and Pandas

from numpy.random import choice
\# random Series
DataFrame(choice(["rock", "paper", "scissors"], size $=(5,2)))$
\downarrow

	0	1
$\mathbf{0}$	paper	rock
$\mathbf{1}$	scissors	rock
$\mathbf{2}$	rock	rock
$\mathbf{3}$	scissors	paper
$\mathbf{4}$	rock	scissors

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Demo: exploring bias

choice(["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Question 2: how can we make it biased (if we want it to be)?

Random Strings vs. Random Ints

from numpy.random import choice, normal
\# random string: rock, paper, or scissors choice(["rock", "paper", "scissors"])
\# random int: 0,1, or 2
choice([0, 1, 2])

Random Strings vs. Random Ints

```
from numpy.random import choice, normal
# random string: rock, paper, or scissors
choice(["rock", "paper", "scissors"])
# random int: 0, 1, or 2
choice([0, 1, 2])
same
# random int (approach 2): 0, 1, or 2
choice(3)
    *
        random non-negative int
                that is less than 3
```


Outline

choice()
bugs and seeding
significance
histograms
normal()

Example: change over time

```
s = Series(choice(10, size=5))
\begin{tabular}{|lll|}
\hline 0 & 6 & \\
1 & 7 & \\
2 & 7 & \\
3 & 3 \\
4 & 1 & \\
dtype: & int64 \\
\hline
\end{tabular}
s.plot.line()
```


Example: change over time

```
s = Series(choice(10, size=5))
```

0	6	
1	7	
2	7	
3	3	
4	1	
dtype:	int64	

s.plot.line()

percents $=$ []
for i in range(1, len(s)):
diff $=100 *(s[i] / \operatorname{s}[i-1]-1)$
percents.append(diff)
Series(percents).plot.line()
what are we computing for diff?

Example: change over time

```
s = Series(choice(10, size=5))
```

0	6	
1	7	
2	7	
3	3	
4	1	
dtype:	int64	

s.plot.line()

percents $=$ []
for i in range(1, len(s)):
diff $=100 *(s[i] / \operatorname{s}[i-1]-1)$
percents.append (diff)
Series(percents).plot.line()
can you identify the bug in the code?

Example: change over time

$S=$ Series (ch

0	9
1	1
2	0
3	8
4	8
dtype: int 64	
S.plot.line ()	

percents $=$ []
for i in range(1, len(s)):
diff $=100 *(s[i] / \operatorname{s}[i-1]-1)$
percents.append (diff)
Series (percents).plot.line()
/Library/Frameworks/Python.framework/Versions/3.7/lib/ python3.7/site-packages/ipykernel_launcher.py:3: Runti meWarning: divide by zero encountered in long_scalars This is separate from the ipykernel package so we ca n avoid doing imports until
can you identify the bug in the code?

Not all bugs are equal!

Not all bugs are equal!

scary bugs
non-deterministic
system related
randomness

Not all bugs are equal!

Not all bugs are equal!

Not all bugs are equal!

Pseudorandom Generators

"Random" generators are really just pseudorandom

Pseudorandom Generators

"Random" generators are really just pseudorandom

Pseudorandom Generators

"Random" generators are really just pseudorandom

Pseudorandom Generators

"Random" generators are really just pseudorandom

Seeding

Seeding

What if I told you that you can choose your track?

```
In [11]: }\quad\begin{array}{lll}{1}&{\mathrm{ np.random.seed(301)}}\\{2}&{\mathrm{ choice(1000, size=3)}}
Out[11]: array([885, 320, 423])
In [12]: 1 np.random.seed(301)
    2 choice(1000, size=3)
Out[12]: array([885, 320, 423])
In [13]: 1 np.random.seed(301)
    2 choice(1000, size=3)
Out[13]: array([885, 320, 423])
```


Seeding

Common approach for simulations:

1. seed using current time
2. print seed
3. use the seed for reproducing bugs, as necessary

In [28]: 1 import time
now $=$ int(time.time())
print("seeding with", now)
np.random.seed(now)
choice(1000, size=3)
seeding with 1556673136
Out[28]: array([352, 734, 362])

Outline

choice()
bugs and seeding
significance
histograms
normal()

In a noisy world, what is noteworthy?

Is this coin biased?

51

49

Call shenanigans?
whoever has the coin cheated
(it's not 50/50 heads/tails)

Is this coin biased?

Call shenanigans? No.

51
49

Is this coin biased?

51

5

95

Call shenanigans? No.

Call shenanigans?

Is this coin biased?

51

5

49

95

Call shenanigans? No.

Call shenanigans? Yes.

Note: there is a non-zero probability that a fair coin will do this, but the odds are slim

Is this coin biased?

51

5

55

45

49

95

45 million

Call shenanigans?
Call shenanigans? No.

Call shenanigans? Yes.

Call shenanigans?
all shenanigans?

Is this coin biased?

51

5

55
45

Call shenanigans? No.

Call shenanigans? Yes.

Call shenanigans? No.

Call shenanigans? Yes.

Is this coin biased?

51

5

55

55 million 45 million

Call shenanigans? No.

Call shenanigans? Yes.
large skew is good evidence of shenanigans
Call shenanigans? No.

Call shenanigans? Yes.

Demo: CoinSim

60

40

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above 10 K times
$[50,61,51,44,39,43,51,49,49,38, \ldots]$

Demo: CoinSim

60

40

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above 10 K times
[50, 61, 51, 44, 39, 43, 51, 49, 49, 38, ...]

Demo: CoinSim

60

40

Call shenanigans?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above 10 K times
$[50,61,51,44,39,43,51,49,49,38, \ldots]$
11 more
12 less

Outline

choice()
bugs and seeding
significance
histograms
normal()

Frequencies across categories

bars are a good way to view frequencies across categories

```
s = Series(["rock", "rock", "paper",
    "scissors", "scissors", "scissors"])
s.value_counts().plot.bar(color="orange")
```


Frequencies across numbers

bars are a bad way to view frequencies across numbers
$s=\operatorname{Series}([0, ~ 0,1,8,9,9])$
s.value_counts().plot.bar(color="orange")

Frequencies across numbers

bars are a bad way to view frequencies across numbers
$s=\operatorname{Series}([0, ~ 0,1,8,9,9])$
s.value_counts().sort_index().plot.bar(color="orange")

Frequencies across numbers

bars are a bad way to view frequencies across numbers

```
s = Series([0, 0, 1, 8, 9, 9])
```

s.value_counts().sort_index().plot.bar()
s.plot.hist()

Frequencies across numbers

histograms are a good way to view frequencies across numbers
$\mathrm{s}=\operatorname{Series}([0,0,1,8,9,9])$
s.value_counts().sort_index().plot.bax()
s.plot.hist()

this kind of plot is called a histogram

Frequencies across numbers

histograms are a good way to view frequencies across numbers

```
s = Series([0.1, 0, 1, 8, 9, 9.2])
```

s.value_counts().sort_index().plot.bax()
s.plot.hist()

a histogram "bins" nearby numbers to create discrete bars

Frequencies across numbers

histograms are a good way to view frequencies across numbers

```
s = Series([0.1, 0, 1, 8, 9, 9.2])
```

s.value_counts().sort_index().plot.bax()
s.plot.hist(bins=10)

we can control the number of bins

Frequencies across numbers

histograms are a good way to view frequencies across numbers

```
s = Series([0.1, 0, 1, 8, 9, 9.2])
```

s.value_counts().sort_index().plot.bax()
s.plot.hist(bins=3)

too few bins provides too little detail

Frequencies across numbers

histograms are a good way to view frequencies across numbers
$\mathrm{s}=$ Series ([0.1, 0, 1, 8, 9, 9.2])
s.value_counts().sort_index().plot.bax()
s.plot.hist(bins=100)

too many bins provides too much detail (equally bad)

Frequencies across numbers

histograms are a good way to view frequencies across numbers

```
s = Series([0.1, 0, 1, 8, 9, 9.2])
```

s.value_counts().sort_index().plot.bax()
s.plot.hist (bins=10)

pandas chooses the default bin boundaries

Frequencies across numbers

histograms are a good way to view frequencies across numbers

```
s = Series([0.1, 0, 1, 8, 9, 9.2])
```

s.value_counts().sort_index().plot.bax()
s.plot.hist(bins $=[0,1,2,3,4,5,6,7,8,9,10])$

we can override the defaults

Frequencies across numbers

histograms are a good way to view frequencies across numbers

```
s = Series([0.1, 0, 1, 8, 9, 9.2])
```

s.value_counts().sort_index().plot.bar()
s.plot.hist(bins=range(11))

this is easily done with range

Demo: Visualize CoinSim Results

Demo: Visualize CoinSim Results

this shape resembles what we often call a normal distribution or a "bell curve"

Demo: Visualize CoinSim Results

this shape resembles what we often call a normal distribution or a "bell curve"
in general, if we take large samples enough times, the sample averages will look like this (we won't discuss exceptions here)

Demo: Visualize CoinSim Results

numpy can directly generate random numbers fitting a normal distribution
this shape resembles what we often call a normal distribution or a "bell curve"
in general, if we take large samples enough times, the sample averages will look like this (we won't discuss exceptions here)

Outline

choice()
bugs and seeding
significance
histograms
normal()

normal

```
from numpy.random import choice, normal
import numpy as np
for i in range(10):
    print(normal())
```


normal

```
from numpy.random import choice, normal
import numpy as np
for i in range(10):
    print(normal())
\begin{tabular}{r|l|}
\hline average is 0 (over many calls) & \begin{tabular}{l}
-0.18638553993371157 \\
0.02888452916769247 \\
1.2474561113726423 \\
numbers closer to 0 more likely \\
-0.5388224399358179 \\
-0.45143322136388525 \\
\(-x\) just as likely as \(x\) \\
-1.4001861112018241 \\
0.28119371511868047
\end{tabular} \\
& \begin{tabular}{l}
0.2608861898556597 \\
\\
-0.19246288728955144
\end{tabular} \\
& 0.2979572961710292
\end{tabular}
```


normal

```
from numpy.random import choice, normal
import numpy as np
s = Series(normal(size=10000))
```


normal

```
from numpy.random import choice, normal
import numpy as np
s = Series(normal(size=10000))
s.plot.hist()
```


normal

```
from numpy.random import choice, normal
import numpy as np
s = Series(normal(size=10000))
s.plot.hist()
```


normal

```
from numpy.random import choice, normal
import numpy as np
s = Series(normal(size=10000))
s.plot.hist(bins=100)
```


normal

from numpy.random import choice, normal import numpy as np
$s=$ Series(normal(size=10000))
s.plot.hist(bins=100, loc= \square, scale= \square)

normal

from numpy.random import choice, normal import numpy as np
$s=$ Series(normal(size=10000))
s.plot.hist(bins=100, loc= \square, scale= \square)
try plugging in different values (defaults are 0 and 1 , respectively)

Demo: plot overlay

Demo: plot overlay

goal: play with loc and scale arguments to normal until gray overlaps red

Demo: plot overlay

goal: play with loc and scale arguments to normal until gray overlaps red

Demo: plot overlay

goal: play with loc and scale arguments to normal until gray overlaps red

Sourav Pal: "Good luck with data crunching! Go grab them all!"

