1220] Randomness

Meena Syamkumar
Mike Doescher



Announcements

P10
e Due Friday May 1
e Late Days may not be used
Everything must be turned in by May 1
Point Redistribution
e Pinned Piazza Post
e Grade distribution is on the syllabus page
Final Project
e Assigned Monday April 27
e Due Wednesday May 6 @11:59 PM
Grading / Resubmission / Deadline Extension — Google Form
e |ncredibly hard to change grades once they are submitted to the registrar
Course Evaluations
Contact Meena if you are interested in being a Mentor next fall.
Want more?
e Data Science Consider CS 320!!!
e Computer Science CS 200, 300, 400
Office Hours



Which series was randomly generated?
Which did | pick by hand?




Recommended summer reading

THANKING, Misconceptions of chance. People expect that a
) sequence of events generated by a random process will
FAST ... SLOW <

represent the essential characteristics of that process
- . -

even when the sequence is short. In considering tosses of
DANIEL

a coin for heads or tails, for example, people regard the
sequence H-T-H-T-T-H to be more likely than the
sequence H-H-H-T-T-T, which does not appear random,
and also more likely than the sequence H-H-H-H-T-H,

KAHNEMAN

which does not represent the fairness of the coin.” Thus,

Thinking, Fast and Slo
by Daniel Kahnemarl

STATISTICS
DONE WRONG

[he Visual Display

of Quantitative Information

The Visual Display of Quantitative Information Statistics Done Wrong
by Edward R. Tufte by Alex Reinhart



Recommended summer reading

THINKING,
FAST .. SLOW

&5
DANIEL
KAHNEMAN

Thinking, Fast and Slow
by Daniel Kahneman

[he Visual I)i\l\h/\

of Quantitative Information

The Visual Display of Quantitative Information
by Edward R. Tufte

new york times bestseller

the signal
and the noise

why so many
predictions fail-
but some don’t

te silver
“Could turn out to be one of the more momentous books @
of the decacde.” ~The New York Times Book Review -

The Signal and the Noise
by Nate Silver

STATISTICS
DONE WRONG

Statistics Done Wrong
by Alex Reinhart



Why Randomize?

Games

Security

--------------------------------------------------------------------------------------------------------------------------------------------------------------------
.

. .

. .,

our focus

Simulation

. *
......
-------------------------------------------------------------------------------------------------------------------------------------------------------------------



Outline

choice()

bugs and seeding
significance
histograms

normal()



New Functions Today

numpy . random:

® powerful collection of functions P iex ] st 1 previous |

‘IIIIIIIIIIIII.

° fChOi Ce§ Random sampling (numpy.random) Table Of Contents

¢ Random sampling

METTIIIIIIIIIIY

Simple random data (numpy . random)

o Simple random
) data
- - rand(dq, d1, ..., dn Random values in a given shape.
Series.plot.hist: { } gen shap o permutations
L] o ° randn{dQ, d1, ..., dn) Return a sample (or samples) from the “standard o Distribution
o Distribu 5
normal” distribution. o Random

‘ Si m i I a r‘ to ba r‘ p I Ot randint{low[, high, size, dtype]) Return random integers from Jow (inclusive) to generator

high (exclusive).
random_integers{low[, high, size]) Random integers of type np.int between low and Previous topic

‘ Vi S u a I iZ e S p re a d Of high, inclusive. numpy.RankWarning

random results , _
powerful collection of functions

Distributions

betala, b[, size]) Draw samples from a Beta
distribution.

binomial(n, p[, size]) Draw samples from a binomial
distribution.

chisquare(df[, size]) Draw samples from a chi-square
distribution.

dirichlet{alphal, size]) Draw samples from the Dirichlet

distribution.

o s Il ST LY i e | & ooy e i Il




choice

from numpy.random import choilce

result = choice([<choicel, choiceZ, ..])

\ list of things to

randomly choose from



choice

from numpy.random import choilce

result = choice(["rock", "paper", "scissors"])

\ list of things to

randomly choose from

Wanna play

https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/


https://en.wikipedia.org/wiki/Rock%E2%80%93paper%E2%80%93scissors
https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

choice

from numpy.random import choilce

result = choice(["rock", "paper", "scissors"])
print (result)

Output:

SCissors
Wanna play

https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/



https://www.securifera.com/blog/2015/09/09/mmactf-2015-rock-paper-scissors-rps/

choice

from numpy.random import choilce

result = choice(["rock", "paper", "scissors"])
print (result)

result = choice(["rock", "paper", "scissors"])
print (result) Output:
SCISSOrs

/‘ rock

each time choice is
called, a value is randomly
selected (will vary run to run)




choice

from numpy.random import choilce

choice (["rock", "paper", "scissors"],

for simulation, we'll often want
to compute many random results



choice

from numpy.random import choilce

choice (["rock", "paper", "scissors"], )

------------------------------------------------------------------------------------------------------------------------------------------------------
*

array ("n...'.r.ock.'..., ...... 'scissors..,..'paper!,. . 'rock!,. .. !.paper..'..‘]f:, dtype='<U8")

it's list-like



Random values and Pandas

from numpy.random import choilce

# random Series
Series(choice (["rock", "paper",

0 rock
1 rock
2 scissors
3 paper
4 scissors
dtype: object

"scissors"],



Random values and Pandas

from numpy.random import choilce

# random Series
DatafFrame (choice(["rock", "paper", "scissors"],

) )

| —

0 1

0 paper rock

1 scissors rock
2 rock rock
3 scissors paper
4 rock scissors



Demo: exploring bias

choilice (["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?



Demo: exploring bias

choilice (["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

40 -

30 -

20 -

10 1

paper -
SCISSOrS -
rock -



Demo: exploring bias

choilice (["rock", "paper", "scissors"])

Question 1: how can we make sure the randomization isn't biased?

Question 2: how can we make it biased (if we want it to be)?

80 -
60 -

20 | p=[...

20 -

rock -
paper -
SCISSOrS -



Random Strings vs. Random Ints

from numpy.random import choilce, normal

il : rock, paper, or scissors
choilice (["rock", "paper", "scissors"])
# - 0, 1, or 2

choice ([0, 1, 21)



Random Strings vs. Random Ints

from numpy.random i1mport cholce, normal

il : rock, paper, or scissors
choilice (["rock", "paper", "scissors"])

# - 0, 1, or 2
choice ([0, 1, 2])

# - 0, 1, or 2
choice (3)

\ random non-negative int

that is less than 3



Outline

choice()

bugs and seeding
significance
histograms

normal()



Example: change over time

s = Series(choilice (10, size=bh)) !
§

0 b

1 7 >

2 7 4 -

3 3 3

4 1

dtype: inté64 2
1-

|

s.plot.line ()




Example: change over time

s = Series(choilice (10, size=bh)) [a
E-

0 b

1 7 >

2 7 4 -

3 3 3

4 1

dtype: inté64 2

s.plot.line () g

percents = []

for 1 1n range(l, len(s)):
diff = 100 * (s[i] / s[i-1] - 1)
percents.append (diff)

Series (percents) .plot.line ()

what are we computing for diff?

0.0

0.5

1.0

1.5

2.0

2.5

3.0




Example: change over time

s = Series(choilice (10, size=bh)) [a
E-

0 b

1 7 >

2 7 4 -

3 3 3

4 1

dtype: inté64 2

s.plot.line () g

percents = []

for 1 1n range(l, len(s)):
diff = 100 * (s[i] / s[i-1] - 1)
percents.append (diff)

Series (percents) .plot.line ()

can you identify the bug in the code?

0.0

0.5

1.0

1.5

2.0

2.5

3.0




Example: change over time

s = Series(choilice (10, size=bh)) %

0 9 81

1 1 6|

2 0 ‘- /

3 8 A \

4 8 x

dtype: inté64 2. “\ /
s.plot.line () 0 ““aahj/

0 1 2 3 4

percents = []
for 1 1n range(l, len(s)):
diff = 100 * (s[i] / s[i1-1] - 1)

percents.append (diff)
. . /Library/Frameworks/Python. framework/Versions/3.7/1ib/
Series (PerCentS) . plOt .llne ( ) python3.7/site-packages/ipykernel launcher.py:3: Runti
meWarning: divide by zero encountered in long scalars
This is separate from the ipykernel package so we ca
n avoid doing imports until

can you identify the bug in the code?



Not all bugs are equal!

scary bugs "nice" bugs

non-deterministic deterministic (reproducible)

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-Y ou-Should-Have-Nightmares-About



https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!

scary bugs "nice" bugs

non-deterministic
system related
randomness

deterministic (reproducible)

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-Y ou-Should-Have-Nightmares-About



https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!

" . "

scary bugs nice" bugs
non-deterministic deterministic (reproducible)
system related
randomness

large data small data

semantic syntax

runtime

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-Y ou-Should-Have-Nightmares-About



https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!

scary bugs "nice" bugs
non-deterministic deterministic (reproducible)
system related
randomness

large data small data

semantic & syntax
runtime

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-Y ou-Should-Have-Nightmares-About



https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Not all bugs are equal!

scary bugs "nice" bugs

non-deterministic
system related
randomness

| deterministic (reproducible)
Seedlnq

large data small data

semantic % syntax
runtime

Igor Siwanowicz

https://owlcation.com/stem/5-Badass-Bugs-That-Y ou-Should-Have-Nightmares-About



https://owlcation.com/stem/5-Badass-Bugs-That-You-Should-Have-Nightmares-About

Pseudorandom Generators

"Random" generators are really just pseudorandom

559 0629 N1o2 0835 ) ... f

235 §oos | 720767 ) ... |

527 §493 |584 534 ) ... |
1 23 ) 3 I




Pseudorandom Generators

"Random" generators are really just pseudorandom

cos | | 1oz oo .|

In [39]: 1 choice(1000, size=3}|

Out[39]: array([684,559,629])

168 | 527 | 493 584 fs3af... |
1 23 ) 3 I

874



Pseudorandom Generators

"Random" generators are really just pseudorandom

559 0629 N1o2 0835 ) ... f

235 §oos | 720767 ) ... |

527 §493 |584 534 ) ... |
1 23 ) 3 I




Pseudorandom Generators

seeds \

100 559 0629 N1o2 0835 ) ... f

"Random" generators are really just pseudorandom

101 235 §oos | 720767 ) ... |

102; 527 §493 §s8a fs3a)... |

2 1 ) 2 I




Seeding

seeds \

100:

What if | told you that you can choose your track?

101 372350908 72§767f ... §

102:

874 ~ o604 ~ 249 " 043 7 952



Seeding

What if | told you that you can choose your track?

In [11]: np.random.seed(301)
choice (1000, size=3)

Out[ll]: array([885, 320, 423])

In [12]: np.random.seed(301)
choice (1000, size=3)

Out[1l2]: array([885, 320, 423])

In [13]: np.random.seed(301)

choice (1000, size=3)

Out[1l3]: array([885, 320, 423])



Seeding

Common approach for simulations:
1. seed using current time

2. print seed
3. use the seed for reproducing bugs, as necessary

In [28]: import time
now = int(time.time())
print("seeding with", now)
np.random.seed(now)
choice (1000, size=3)

seeding with 1556673136

Out[28]: array([352, 734, 362])



Outline

choice()

bugs and seeding
significance
histograms

normal()



In a noisy world, what is noteworthy?

TOUR OF ACCOUNTING

ARE

NINE NINE YOU THAT'S THE
OVER HERE NINE NINE SURE PROBLEM
LWE HAVE OUR NINE NINE THATS WITH RAN-

DOMNESS:
YOU CAN
NEVER BE
SURE.

RANDOM NUMBER
GENERATOR.

RANDOM?

|uf;5]'=.|f.'l 2001 United Feature Syndicate, Inc.

www.dilbert.com  scottadams@aol.com

https://dilbert.com/strip/2001-10-25



https://dilbert.com/strip/2001-10-25

Is this coin biased?

Call shenanigans?

a statistician might say we're
trying to decide if the evidence
that the coinisn't fair is

whoever has the coin cheated
(it's not 50/50 heads/tails)



Is this coin biased?

Call shenanigans? No.




Is this coin biased?

Call shenanigans? No.

Call shenanigans?




Is this coin biased?

Call shenanigans? No.

Call shenanigans? Yes.

Note: there is a non-zero probability that a fair
coin will do this, but the odds are slim



Is this coin biased?

Call shenanigans? No.

Call shenanigans? Yes.

Call shenanigans?

Call shenanigans?

55 million 45 million



Is this coin biased?

Call shenanigans? No.

Call shenanigans? Yes.

Call shenanigans? No.

Call shenanigans? Yes.

55 million 45 million



Is this coin biased?

Call shenanigans? No.

Call shenanigans? Yes.

(55 million 45 million ) small skew over large samples is good evidence




Demo: CoinSim

Call shenanigans?

Strategy: simulate a fair coin

[50,

1.
2.
3.

ol,

"flip" it 100 times using numpy.random.choice
count heads
repeat above 10K times

51, 44, 39, 43, 51, 49, 49, 38,



Demo: CoinSim

Call shenanigans?

60 40

we got 10 more heads than we expect on average
how common is this?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above 10K times

[50, o1, 51, 44, 39, 43, 51, 49, 49, 38, ...]



Demo: CoinSim

Call shenanigans?

60 40

we got 10 more heads than we expect on average
how common is this?

Strategy: simulate a fair coin

1. "flip" it 100 times using numpy.random.choice
2. count heads
3. repeat above 10K times

50,(61,) 51, 44, 39, 43, 51, 49, 49,(38,)...]

11 more 12 less



Outline

choice()

bugs and seeding
significance
histograms

normal()



Frequencies across categories

bars are a good way to view frequencies across categories

s = Series(["rock", "rock", "paper",
"scissors", "scissors", "scissors"])

s.value counts () .plot.bar(color="orange")

40 -

30 -

20 -

10 1

paper -
SCISSOrS -
rock -



Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series ([0, O, 1, 8, 9, 9])

s.value counts () .plot.bar(color="orange")

click to scroll output; double click to hide
e = Yl

15-

1.0-

0.5 -

0.0-

o o0

numbers not ordered



Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series ([0, O, 1, 8, 9, 9])

s.value counts () .sort index () .plot.bar (color="orange")

2.0 -

1.5-

1.0-

0.5 -

0.0

— o8] (o))

gap between 1 and 8 not obvious



Frequencies across numbers

bars are a bad way to view frequencies across numbers

s = Series ([0, O, 1, 8, 9, 9])

TT’W-I'I'I N /ANT 11

.\
e V CUL_L UL\ — U ULl

S.plot.ﬁist(

n
n

Frequency
= =
= LN

Q
n

<
o




Frequencies across numbers

histograms are a good way to view frequencies across numbers

o 1z 111 A1t o () o~ vrt+ 1nAdAasz () 1l ~+ ha+ (\
() VvV L L L/LC_\_/UU.J.J. O o \ / [ U L.,__LJ.J.MCA \ / t/_L\JL, o NJCL L \ /
s.plot.hist ()
2.0 -
1.5 1
e
L
=
4
> 1.0
&
L
0.5
0.0-
4 b

this kind of plot is called a histogram



Frequencies across numbers

histograms are a good way to view frequencies across numbers

Frequency
= =
= LN

Q
n

0.0-

a histogram "bins" nearby numbers to create discrete bars



Frequencies across numbers

histograms are a good way to view frequencies across numbers

o 1z 111 A1t o () o~ vrt+ 1nAdAasz () 1l ~+ ha+ (\
() VvV L L L/LC_\_/UU.J.J. O o \ / [ U L.,__LJ.J.MCA \ / t/_L\JL, o NJCL L \ /
s.plot.hist ( )
2.0 -
1.5 1
e
L
=
4
> 1.0
&
L
0.5
0.0-
4 b

we can control the number of bins



Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Serles([0.1, 0O, 1, 8, 9, 9.27)

H
N

h
<
€
()
-
n O
O qf
!
3
0
|
OSIN0)

)]
O
— @
O K
g
o |

Frequenc

too few bins provides too little detail



Frequencies across numbers

histograms are a good way to view frequencies across numbers

p
q
Q
|_
o
(]
(]
d

=
o

ot
I

Frequency

—
I

0.0-

too many bins provides too much detail (equally bad)



Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([0.1, 0O, 1, 8, 9, 9.27)
o s 111 A1t o () a~vrt+ 1T nnAdAass () ~l~+ I+ ()
() Vv L L L/LC_\./ULJ.J.J. | ) \ / [\ 2 UV L_,__LJ.J.MCA \ / t/_L\JL, o NJCL L \ /
s.plot.hist( )
2.0 -
1.5 1
o
=
.
> 1.0
a
s
0.5
0.0 -
4 6

pandas chooses the default bin boundaries



Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([0.1, O, 1, 8, 9, 9.2])
o s 111 A1t o () a~vrt+ 1T nnAdAass () ~l~+ I+ ()
Soevaroc COoOTrtco (/- o0 c Ot x {7 - pPpTroc+- oo )
s.plot.hist ( )
2.0 -
1.5 1
)
=
.
> 1.0
i
L
0.5
0.0
4 6

we can override the defaults



Frequencies across numbers

histograms are a good way to view frequencies across numbers

s = Series([0.1, O, 1, 8, 9, 9.2])
o s 111 A1t o () a~vrt+ 1T nnAdAass () ~l~+ I+ ()
Soevaroc COoOTrtco (/- o0 c Ot x {7 - pPpTroc+- oo )
s.plot.hist ( )
2.0 -
1.5 1
)
=
.
> 1.0
i
L
0.5
0.0
4 6

this is easily done with range



Demo: Visualize CoinSim Results

800 -

h
-
=

Freguency
S
-

200 -

0 20 40 60 80 100
number of heads (out of 100)



Demo: Visualize CoinSim Results

800 -

h
-
=

Freguency
S
-

200 -

0 20 40 60 80 100
number of heads (out of 100)

this shape resembles what we often call a
normal distribution or a "bell curve"



Demo: Visualize CoinSim Results

800 -

h
-
=

Freguency
S
-

200 -

0 20 40 60 80 100
number of heads (out of 100)

this shape resembles what we often call a
normal distribution or a "bell curve"

in general, if we take large samples enough
times, the sample averages will look like this
(we won't discuss exceptions here)



Demo: Visualize CoinSim Results

800 -

h
-
=

Freguency
S
-

200 -

0 20 40 60 80 100
number of heads (out of 100)

numpy can directly
generate random this shape resembles what we often call a
numbers fitting a (normal distributioaor a "bell curve"
normal distribution

in general, if we take large samples enough
times, the sample averages will look like this
(we won't discuss exceptions here)



Outline

choice()

bugs and seeding
significance
histograms

normal()



normal

from numpy.random import choice, normal
import numpy as np

for 1 1n range (10) :
print (normal () )



normal

from numpy.random import choice, normal
import numpy as np

for 1 1n range (10) :
print (normal () ) Output:

-0.18638553993371157
0.02888452916769247
average is O (over many calls) 1 2474561113726423
numbers closer to 0 more likely [-0.5388224399358179
_ , -0.45143322136388525
-x just as likely as x

-1.4001861112018241
0.28119371511868047/

0.2608861898556597
-0.19246288728955144
0.2979572961710292



normal

from numpy.random import choice, normal
import numpy as np

s = Series (normal (s1ze=10000))



normal

from numpy.random import choice, normal
import numpy as np

s = Series (normal (s1ze=10000))

s.plot.hist ()



normal

from numpy.random i1mport choice, normal
import numpy as np

s = Series (normal (s1ze=10000))

s.plot.hist ()

Frequency




normal

from numpy.random i1mport choice, normal
import numpy as np

s = Series (normal (s1ze=10000))

s.plot.hist (bins=100)

300 -
250 -

Frequency

P

v o O O
o o o o

=




normal

from numpy.random i1mport choice, normal
import numpy as np

s = Series (normal (s1ze=10000))

s.plot.hist (bins=100, locz@, Scale=®)

300 -
250 -

Frequency

P

v o O O
o o o o

=




normal

from numpy.random i1mport choice, normal
import numpy as np

s = Series (normal (s1ze=10000))

s.plot.hist (bins=100, locz@, Scale=®)

try plugging in different values
(defaults are 0 and 1, respectively)

300 -
250 -

Frequency

P

v o O O
o o o o

=




Demo: plot overlay

3000 -

N
-
-
-

Frequency

1000 -

A

0 20 40 60 80 100

\ L 10K samples of 100 coin flips

10K samples from normal(size=10000)




Demo: plot overlay

3000 -

| a

20 40 60 80 100

0
\ & 10K samples of 100 coin flips

10K samples from normal(size=10000)

N
-
-
-

version 1

Frequency

goal: play with Lloc and scale arguments to normal until gray overlaps red



Demo: plot overlay

Frequency

3500
3000 -
- 2500 -
3000 >
T 2000 - version 2
S
oy i
2000 E 1500
1000 +
500 -
1000 - )
' 80 100
0

N

goal: play with Lloc and scale arguments to normal until gray overlaps red

20 40 60 80 100

& 10K samples of 100 coin flips

10K samples from normal(size=10000)




Demo: plot overlay

Frequency

3500
3{]"\ﬂ-
3500
3000 - 2 000
= 20
515 2500 -
2000 - E EEDUD | version 3
10| %
o 1500 -
of &
1000 - 1000 -
500 - ‘
01— . . .
0 0 20 40 60 80 100

N

K 10K samples of 100 coin flips

10K samples from normal(size=10000)

goal: play with 1loc and scale arguments to normal until gray overlaps red







'L, .
o
‘ g <
VRSN A
A

R Y

T

,’? ,
St )
l»",“ é ‘.jv't‘k\-‘..‘,




Yuchen Zeng: “Thank you so much for
your hard work”




)

Sean Chung: “Thank you and stay safe”

T







~—

@ Zhenmei Shi: “Good luck this semester, and
" in your studies at UW-Madison!”

NS
S

i



Sourav Pal: “Good luck with data
crunching! Go grab them all!”

] ?

thlih J'




-

S o p— '

Tyler Caraza-Harter: "You should all take CS 320 next falll”

= N



